Low-costadsorbentsforheavymetalsuptakefrom
contaminatedwater:areview
SandhyaBabel∗,TonniAgustionoKurniawan
EnvironmentalTechnologyProgram,SirindhornInternationalInstituteofTechnology(SIIT),
ThammasatUniversity,P.O.Box22,Pathumthani12121,ThailandReceived28June2002;receivedinrevisedform19September2002;accepted23September2002
Abstract
Inthisarticle,thetechnicalfeasibilityofvariouslow-costadsorbentsforheavymetalremovalfromcontaminatedwaterhasbeenreviewed.Insteadofusingcommercialactivatedcarbon,re-searchershaveworkedoninexpensivematerials,suchaschitosan,zeolites,andotheradsorbents,whichhavehighadsorptioncapacityandarelocallyavailable.Theresultsoftheirremovalperfor-mancearecomparedtothatofactivatedcarbonandarepresentedinthisstudy.Itisevidentfromourliteraturesurveyofabout100papersthatlow-costadsorbentshavedemonstratedoutstandingremovalcapabilitiesforcertainmetalionsascomparedtoactivatedcarbon.Adsorbentsthatstandoutforhighadsorptioncapacitiesarechitosan(815,273,250mg/gofHg2+,Cr6+,andCd2+,re-spectively),zeolites(175and137mg/gofPb2+andCd2+,respectively),wasteslurry(1030,560,540mg/gofPb2+,Hg2+,andCr6+,respectively),andlignin(1865mg/gofPb2+).Theseadsor-bentsaresuitableforinorganiceffluenttreatmentcontainingthemetalionsmentionedpreviously.Itisimportanttonotethattheadsorptioncapacitiesoftheadsorbentspresentedinthispapervary,dependingonthecharacteristicsoftheindividualadsorbent,theextentofchemicalmodifications,andtheconcentrationofadsorbate.
©2002ElsevierScienceB.V.Allrightsreserved.
Keywords:Low-costadsorbents;Activatedcarbon;Heavymetalremoval;Contaminatedwater;Wastewatertreatment
1.Introduction
Sinceitsfirstintroductionforheavymetalremoval,activatedcarbonhasundoubtedlybeenthemostpopularandwidelyusedadsorbentinwastewatertreatmentapplicationsthroughouttheworld.Inspiteofitsprolificuse,activatedcarbonremainsanexpensive
Correspondingauthor.Tel.:+66-2986-9009x2307;fax:+66-2986-9112-3.E-mailaddress:sandhya@siit.tu.ac.th(S.Babel).
0304-34/02/$–seefrontmatter©2002ElsevierScienceB.V.Allrightsreserved.PII:S0304-34(02)00263-7
∗
220S.Babel,T.A.Kurniawan/JournalofHazardousMaterialsB97(2003)219–243
materialsincehigherthequalityofactivatedcarbon,thegreateritscost.Activatedcarbonalsorequirescomplexingagentstoimproveitsremovalperformanceforinorganicmatters.Therefore,thissituationmakesitnolongerattractivetobewidelyusedinsmall-scaleindustriesbecauseofcostinefficiency.
Duetotheproblemsmentionedpreviously,researchinterestintotheproductionofal-ternativeadsorbentstoreplacethecostlyactivatedcarbonhasintensifiedinrecentyears.Attentionhasbeenfocusedonthevariousadsorbents,whichhavemetal-bindingcapacitiesandareabletoremoveunwantedheavymetalsfromcontaminatedwateratlowcost.Be-causeoftheirlowcostandlocalavailability,naturalmaterialssuchaschitosan,zeolites,clay,orcertainwasteproductsfromindustrialoperationssuchasflyash,coal,andoxidesareclassifiedaslow-costadsorbents.
Chitosanhasreceivedconsiderableinterestforheavymetalsremovalduetoitsexcellentmetal-bindingcapacitiesandlowcostascomparedtoactivatedcarbon.InAsiancountriessuchasThailand,Japan,andChina,fisherywastessuchasshrimp,lobster,andcrabshellshavebeendevelopedintooneofthepromisingoptionstoproducechitosan.Thesewastescouldbeobtainedforfreefromlocalfisheryindustries.Sincesuchwastesareabundantlyavailable,chitosanmaybeproducedatlowcost.Consequently,chitosanoffersalotofpromisingbenefitsforwastewatertreatmentapplicationstoday.
Naturalzeolitesalsogainedasignificantinterestamongscientist,mainlyduetotheirvaluablepropertiessuchasionexchangecapability.LargedepositsofnaturalzeolitesinmanycountriessuchasGreece,UK,Italy,Mexico,Iran,andJordan,providelocalindustriessomepromisingbenefitssuchascostefficiencysincetheyareabletotreatwastewatercontaminatedwithheavymetalatlowcost.
Clayisoneofpotentialalternativestoactivatedcarbonaswell.Similartozeolites,claymineralsarealsoimportantinorganiccomponentsinsoil.Theirsorptioncapabilitiescomefromtheirhighsurfaceareaandexchangecapacities.Thenegativechargeonthestructureofclaymineralsgivesclaythecapabilitytoattractmetalions.TheUSAandtheformerRepublicsofSovietUnionsuchasLithuania,Georgia,andKazakhstanarewellknownfortheirlargedepositsofnaturalclayminerals.
Industrialwasteisalsooneofthepotentiallylow-costadsorbentforheavymetalremoval.Itrequireslittleprocessingtoincreaseitssorptivecapacity.Generallyindustrialwastesaregeneratedasby-products.Sincethesematerialsarelocallyavailableinlargequantities,theyareinexpensive.InIndia,varioustypesofindustrialwastessuchaswasteslurry,lignin,iron(III)hydroxide,andredmud,havebeenexploredfortheirtechnicalfeasibilitytoremoveheavymetalsfromcontaminatedwater.
Lowrankcoal,suchaslignite,iscapableofhavingionexchangewithheavymetalsduetoitscarboxylicacidandphenolichydroxylfunctionalgroups.Thesematerialsexistaslargedepositsinmanycountries,notablyAustraliaandIndia.
Otherlow-costadsorbents,suchasagriculturalwastes,havebeenstudiedlessextensivelyduetotheirlocalavailability.Althoughmanyresearchworkshavebeendonerecentlytofindthepotentialofusingvariousalternativeadsorbents,sofarnoeffortshavebeenmadetoobtainacomparativeoverviewofalladsorbentsmentionedpreviouslyintermsoftheirremovalperformance,adsorptioncapacity,andcosteffectiveness.
Anoverviewofsomelow-costadsorbentsbasedonrecentpublicationsispresentedinthispaperandtheirremovalperformanceiscompared.Adsorbentsthatstandoutfor
S.Babel,T.A.Kurniawan/JournalofHazardousMaterialsB97(2003)219–243221
highremovalefficienciesandadsorptioncapacitiesarecomparedwiththeactivatedcarbon.
2.Low-costadsorbentsandremovalofheavymetals2.1.Chitosan
Amongvariousbiosorbents,chitinisthesecondmostabundantnaturalbiopolymersaftercellulose.However,moreimportantthanchitinischitosan,whichhasamolecularstruc-turesimilartocellulose.Presently,chitosanisattractinganincreasingamountofresearchinterest,asitisaneffectivescavengerforheavymetals.
ChitosanisproducedbyalkalineN-deacetylationofchitin,whichiswidelyfoundintheexoskeletonofshellfishandcrustaceans.ItwasestimatedthatchitosancouldbeproducedfromfishandcrustaceansatamarketpriceofUS$15.43/kg[1].Thegrowingneedfornewsourcesoflow-costadsorbent,theincreasedproblemsofwastedisposal,theincreasingcostofsyntheticresinsundoubtedlymakechitosanoneofthemostattractivematerialsforwastewatertreatment.
Variousresearchesonchitosanhavebeendoneinrecentyears.In1988,theutilizationofchitosanforcadmiumremovalwasintensivelyinvestigated[2].Itwasdemonstratedthatanadsorptioncapacityof5.93mgofCd2+/gofchitosanwasachievedatapHrangeof4.0–8.3andthatthepresenceofethylenediaminetetraaceticacid(EDTA)significantlydecreasedthecadmiumremovalbychitosansinceEDTA,astrongerchelatingagentthanchitosan,suppressedthemetaluptakebychitosan.ItwasalsoreportedthatinthepresenceofEDTA,theaffinityofCd2+fortheaminogroupswasdrasticallyreducedsincetheEDTAmaskedthepresenceofCd2+inaqueoussolution,causingtheirremovalfromthesolutiontobecomedifficult.
Anothersimilarresearchevaluatedthesorptionofsomemetalionsontochitosan[3].ItwasfoundthatthemaximumadsorptioncapacitiesofchitosanforHg2+,Cu2+,Ni2+,andZn2+were815,222,1,and75mg/g,respectively.However,theresultofmercuryremovalwasdifferentfromthatobtainedinthelatterstudy[4],whichindicatedthatanadsorptioncapacityof430mgofHg2+/gwasachievedbychitosan.Thisdifferenceoccursduetothefactthatthelatterstudyusedchitosan,withparticlesizerangingfrom1.25to2.5mm(against0.21–1mmintheformerstudy[3]).Suchreductioninparticlesizeofchitosan,ofcourse,increasesitssurfaceareatobeadsorbedbythemetalionsanditresultsinhigherremovalefficiencyofheavymetal.Therefore,theextentofsurfaceoccupancybyadsorbatehasadecisiveinfluenceupontheremovalefficiencyofchitosan.
Theinteractionbetweenchitosanandhexavalentchromiumwasintensivelyinvestigated[5].Itwasobservedthatanadsorptioncapacityof273mgofCr6+/gchitosanwasachievedatpHof4.0.In1996,acomparativestudyontheadsorptioncapacityofchitosanforvariousmetalionssuchCu2+,Cd2+,Ni2+,Pb2+,andHg2+wasconducted[6].ItwasfoundthatchitosanexhibitsthehighestbindingcapacityforHg2+(Table1).
Theadsorptionofcopperonchitosanwasalsostudiedanditwasfoundthat1gchitosancouldadsorb4.7mgofCu2+atpHof6.2[7].Thisresultissignificantlydifferentfromthatobtainedinapreviousstudy[8].ItwasreportedthatpHof5.5wasfoundtobe
222S.Babel,T.A.Kurniawan/JournalofHazardousMaterialsB97(2003)219–243
Table1
Adsorptioncapacities(mg/g)ofchitosanforvariousheavymetalsMaterialChitosan
Sources[2][3][4][5][6][7][8][11][12][12][10][13][13][13]
Cr6+
Ni2+
Pb2+
Hg2+815430
273
2.40
16.36
51.55
16.804.7013.008586
280
606246
8.54
Zn2+75
Cu2+222
Cd2+5.93
Pt6+
Chitosanbeads
Non-crosslinkedchitosanCrosslinkedchitosanCrosslinkedchitosanwithGDECEGDE
250.00
8050
optimumforcopperremovalandabout13mgofCu2+couldbeadsorbedby1gchitosanatequilibriumcondition.Thedifferenceinchitosanadsorptioncapacitybetweenthetwostudiescouldbeduetothefactthatabiggerparticlesizeofchitosan(200mesh)wasusedintheformerstudy[7](against50meshinthelatterstudy[8]).Suchincreaseinparticlesizeofchitosan,ofcourse,decreasessurfaceareaavailableforadsorption,resultinginloweradsorption.
Chemicalmodificationsofchitosanwerealsoconductedtoimproveitsremovalperfor-manceandadsorptioncapacityformetalions.In1994,itwasevaluatedwhetherchemicalmodificationofchitosanpromotesselectivityinvanadiumsorptionornot[9].Itwasreportedthatchitosananditsoxo-2-glutaricacidsubstituteformareeffectivetoadsorb450mgofvanadium/gandthatthesorptionpreferentiallyfollowtheFreundlichisotherm.ItwasalsofoundthatpHof3.0wasfoundtobeoptimumforvanadiumuptake.
Theremovalofplatinumusingchitosan-derivedsorbentswasalsocarriedout[10].Itwasfoundthatglutaraldehyde-crosslinkedchitosanwasveryeffectiveforremovingPt6+andthatitsadsorptioncapacitywasabout280mgofPt6+/g.ItwasalsoreportedthattheoptimumpHforPt6+sorptionisaround2.0.
In1998,thecrosslinkingeffectofglutaricaldehydeontheremovalofCd2+usingchitosanbeadswasdemonstrated[11].Itwasreportedthattheadsorptioncapacityofthecrosslinkedgelbeadsexponentiallydecreased60%from250mgofCd2+/g.
Thecrosslinkingeffectsofchitosanwerealsoinvestigated[12].Itwasfoundthatnon-crosslinkedchitosanhaspotentialtoadsorb30mgmoreofCr6+/gofchitosan.Thisisconsistentwiththefactthatcross-linkingreducestheadsorptioncapacitiesofchitosan,butthislossofcapacitymaybenecessarytoensurethestabilityofchitosan.
ThelatestsimilarexperimentalworkdemonstratedtheadsorptionofCu2+ontochitosancrosslinkedwithglutaraldehyde(GD),epichlorohydrin(EC),andethyleneglycoldiglycidylether(EGDE)[13].ItwaspointedoutthatpHof6.0wasfoundtobeoptimumforCu2+
S.Babel,T.A.Kurniawan/JournalofHazardousMaterialsB97(2003)219–243223
removalandthattheuptakeofCu2+onchitosancrosslinkedwithGD,EC,andEGDEbeadswere59.67,62.47,and45.94mg/g,respectively.
Overall,theresultsmentionedpreviouslyindicatethatchitosanisagoodadsorbentforallheavymetals.Itiswidelyknownthattheexcellentadsorptionbehaviorsofchitosanforheavymetalremovalisattributedto:(1)highhydrophilicityofchitosanduetolargenumberofhydroxylgroups,(2)largenumberofprimaryaminogroupswithhighactivity,and(3)flexiblestructureofpolymerchainofchitosanmakingsuitableconfigurationforadsorptionofmetalions.2.2.Zeolites
Basicallyzeolitesareanaturallyoccurringcrystallinealuminosilicatesconsistingofaframeworkoftetrahedralmolecules,linkedwitheachotherbysharedoxygenatoms.During1970s,naturalzeolitesgainedasignificantinterestamongscientistsduetotheirion-exchangecapabilitytopreferentiallyremoveunwantedheavymetalssuchasstrontiumandcesium[14].Thisuniquepropertymakeszeolitesfavorableforwastewatertreatment.ThepriceofzeolitesitselfisconsideredverycheapaboutUS$0.03–0.12/kg,dependingonthequalityofthezeolitesitself[15].
Zeolitesconsistofawidevarietyofspeciessuchasclinoptiloliteandchabazite.Clinop-tiloliteismostabundantinnatureandisreadilyavailablefrommorethan40naturalze-olitesspecies[16].Amongthemostfrequentlystudiednaturalzeolites,clinoptilolitewasshowntohavehighselectivityforcertainheavymetalionssuchasPb2+,Cd2+,Zn2+,andCu2+.
In1990,theremovalofheavymetalsfromwastewaterusingclinoptilolitewasstudied[17].Theresultsindicatedthattheionexchangeloadingvaluescouldrangefrom1.6mg/gforPb2+to0mg/gforCr3+.Theselectivityoftheseriesoftheheavymetalsstudiedwasdeterminedtobeasfollows:
Pb2+>Cd2+>Cu2+>Co2+>Cr3+>Zn2+>Ni2+>Hg2+
Researchhasbeenconductedtoshowtheeffectivenessofclinoptilolitetoremoveleadandcadmiumaswell[18].ItwasindicatedthatclinoptiloliteismoreselectiveforPb2+,butCd2+isalsoexchangedatsatisfactorylevel.Approximately1.4mg/gofPb2+and1.2mg/gofCd2+wereremoved.Concerningtheeffectoftemperatureontheadsorptionprocess,itwasfurthermentionedthatthemetalsuptakeisfavoredathighertemperature[19]sinceahighertemperatureactivatesthemetalionsforenhancingadsorptionatthecoordinationsiteofzeolites(Table2).
In1992,afurtherinvestigationontheuseofcarbonizedzeolitesforremovingleadfromwastewaterwasalsoconducted[20].Thestrategybehindcreatingcarbonizedzeolitesistocombinelyophilicandlyophobicsurfacesthatcanbindwithorganicandinorganicsubstances,whicharefoundinwastestreams.Itwasreportedthatthecarbonizedzeolitesremovedabout99%of260ppmleadsolution.
Theinfluenceofpretreatmentuponthecationexchangecapacity(CEC)andselectivityofzeolitesformetalionswasinvestigatedbyanumberofresearchers.ItwasdemonstratedthattheCECofclinoptilolitedependsonthepretreatmentmethodandthatcondition-ingimprovesitsionexchangeabilityandremovalefficiency[21].Theirfindingswerein
224S.Babel,T.A.Kurniawan/JournalofHazardousMaterialsB97(2003)219–243
Table2
Metaluptakebyclinoptiloliteatdifferenttemperaturesandparticlesize[19]Particlesizeofclinoptilolite(m)
Pb2+a25◦C
<600
160–600600–10001000–2000
a
Cd2+a
50◦C1.41–1.311.29
25◦C1.061.021.010.98
50◦C1.20–1.121.08
1.311.291.281.27
Pb2+andCd2+takenatequilibrium(meq/g).
agreementwith[22–24].ItwasalsoreportedthatconditioningofzeoliteswithNaOHsolutionimprovedremovalefficiency.Chabaziteandclinoptilolitetreatedwithsodiumhy-droxideperformedbestwithPb2+andCd2+exchangecapacityexceeding100mg/gandtheperformanceofchabazite’sCECwasindicatedtobesuperiortothatofclinoptiloliteforboththeions.
Inafurtherstudy,theremovalperformanceofclinoptiloliteandchabazitewascompared[25].ThetwozeoliteswereevaluatedwithrespecttotheirperformancefortreatingeffluentscontaminatedwithPb2+,Cd2+,Cu2+,Zn2+,Ni2+,andCo2+.Itwasreportedthatboththezeolitesexhibited100%removalefficiencyatthemetalconcentrationof10mg/l.ItwasalsofoundthatclinoptiloliteandchabaziteexhibiteddifferentselectivityforallmetalsstudiedexceptPb2+,forwhichbothperformedexceptionallywell.Finally,itwasconcludedthatthesuperiorityofchabazite’sCECwasmainlyduetothefactthatchabazitehasahigherAlsubstitutionofSithanclinoptilolite.Thisprovideschabaziteanegativeframeworkfavorableforhigherexchangecapability.
TheinteractionsofPb2+,Cd2+,andCr6+competingforionexchangesitesinclinop-tilolitewasalsoinvestigated[26].ItwasreportedthatdissolvedPbandCdwereeffectivelyremovedinacidicpHrange.ItwasalsofoundthatthepresenceofCr6+diminishesthere-movalefficiencyofPb2+andCd2+.Itwassuggestedthatdecreasedremovalperformanceisduetothepresenceofligandsthatformcomplexeswithreducedaccessibilityand/oraffinityforionexchange.
In1991,theremovalofCr3+fromindustrialwastewaterusingItaliannaturalzeolitetuffscontainingphillipsiteandchabazitewasevaluatedincolumnoperation[27].Table3describestheoperatingconditionssetforcolumnexperiments.Itwasreportedthatalower
Table3
Operationalparametersforcolumnexperiments[27]Operationalparameters(units)Columndiameter(cm)Beddepth(cm)
Doseofadsorbent(g)
FeedcompositionofCr3+(mg/l)Flowrate(ml/min)Contacttime(min)
Value1.4338–48
47.10–50.9052–561.83–7.008.7–33.3
S.Babel,T.A.Kurniawan/JournalofHazardousMaterialsB97(2003)219–243
Table4
SummaryofcolumnrunsforCr3+uptakebyItalianzeolites[27]TypeoftuffsampleGSNA–GSNPNP
CEC(meq/g)2.112.112.662.66
Flowrate(ml/min)7.007.007.001.83
WorkingCEC(meq/l)56525252
Efficiency(%)9.015.210.215.4
225
Adsorptioncapacity(mgofCr3+/g)3.35.54.77.1
Table5
Columnoperationconditions[28]Operationalparameters(units)Columninternaldiameter(cm)Beddepth(cm)Bedweight(g)
Averagebeddensity(g/cm3)Bedvolume(cm3)Flowrate(ml/min)
Value4.525400140015
flowrate(1.83ml/min)ismorefavoredbytheNaionsofzeolitesforahighercationexchangecapacity(CEC)withCr3+(Table4).Itcanbeexplainedduetothefactthatmorephysicochemicalinteractionsoccurredbetweenzeolitesandmetalspeciesduringcolumnoperation.Theresultsindicatedthatflowrateisthemostcrucialcharacteristicinevaluatingtheeffectivenessofanadsorbentforchromiumadsorption.
Theeffectofflowrateontheadsorptioncapacitywasalsodemonstratedinthelatterstudy[28].ThespecificconditionsofcolumnoperationarelistedinTable5.FromtheTable6,itcanbeseenthattheCr3+uptakebyzeolitesincolumnoperationissignificantlyhigherinthepreviousstudy[27]thanthatinthelatterstudy[28]duetotheeffectofflowrate.Duringcolumnoperation,aflowrateof15ml/minwasusedinthelatterstudy[28],butalowerflowrateof1.83ml/minwasappliedintheformerstudy[27].
Itwasalsoreportedthatatthesameflowrate,zeoliteshadahighercationexchangecapacitywithNi2+andCu2+thanthatwithZn2+,Cr3+,andFe2+(Table7)[28].Itcan
Table6
Adsorptioncapacities(mg/g)ofzeolitesforsomeheavymetalsMaterialClinoptilolite
Source[17][18][21][25][21][25][27][28]
Cd2+2.401.2070.003.701376.70
7.100.25Cr3+0
Cr6+
Co2+1.42
Ni2+0.48
Zn2+0.50
Cu2+1.
Pb2+1.601.4062.006.001756.00
2.403.60
1.505.8
0.904.500.56
2.705.500.04
3.805.100.37
Chabazite
Chabazite–phillipsite
226S.Babel,T.A.Kurniawan/JournalofHazardousMaterialsB97(2003)219–243
Table7
SummaryofcolumnrunsforNi2+,Zn2+,Cu2+,Cr3+,andFe2+uptakebyJordanianzeolites[28]ParametersVb(BV)Vt(BV)MTZ(cm)CEC(meq/g)WEC(meq/g)Efficiency(%)Selectivity(%)
Ni2+23.7052.5021.801.120.5329.6063.60
Zn2+27.5060.0018.500.080.042.204.60
Cu2+25.0047.5015.500.760.4122.7041.10
Cr3+27.5062.5019.400.740.3519.7042.40
Fe2+27.5065.0020.200.130.063.107.10
Remarks
Vb:volumeatbreakthroughpointinbedvolume(BV)Vt:totalvolumeatexhaustionpointexpressedinBVMTZ:masstransferzoneCEC:CECforindividualcationattheexhaustionpointWEC:CECforindividualcationatbreakthroughpointEfficiency(%)=(WEC/totalCEC)×100
Selectivity(%)=(CEC/totalCEC)×100
beexplainedduetothefactthattheNi2+andCu2+weremorepreferableforzeolitesduetotheirhigherconcentrations.Therefore,bothionshadgreateropportunitytohaveionexchangewiththeNaionsofzeolitesthanothers.
Overall,theresultspresentedaboveshowthatinsteadofusingcostlyactivatedcarbon,zeolitesholdgreatpotentialtoremoveheavymetalspeciesfromindustrialwastewatereffluents.However,lowpermeabilityofzeolitesrequiresanartificialsupportwhenusedincolumnoperations.2.3.Clay
Itiswidelyknownthattherearethreebasicspeciesofclay:smectites(suchasmont-morillonite),kaolinite,andmicas;outofwhichmontmorillonitehasthehighestcationexchangecapacityandthatitscurrentmarketprice(aboutUS$0.04–0.12/kg)isconsid-eredtobe20timescheaperthanthatofactivatedcarbon[29].Therefore,anumberofstudieshavebeenconductedusingclays,mainlymontmorillonite,toshowtheireffec-tivenessforremovingmetalionssuchasZn2+,Pb2+,andAl3+fromaqueoussolutions[30–32].
In19,theremovalperformanceofmontmorilloniteandkaoliniteforleadandcadmiumwascompared[33].ItwasfoundthattheadsorptioncapacityofPb2+andCd2+isgreateronmontmorillonite(Pb:0.68,Cd:0.72mg/g)thanonkaolinite(Pb:0.12,Cd:0.32mg/g).Itwasalsoindicatedthatthepresenceofcationicsurfactantreducestheuptakeofbothions,whiletheanionicsurfactantsenhancetheirremoval.
TheadsorptionofmontmorilloniteonCd2+andZn2+wasalsoevaluated[34].ItwasfoundthattheZn2+isadsorbedinlargeramountsthanCd2+duetothefactthatzinchashigherionicpotentialthancadmium.Therefore,Zn2+adsorptionwasfavoredoverCd2+bycationicinterchange.
TheremovalofzincfromwastewaterusingChinaclay,whichmainlyconsistsofalumi-nosilicates,wasstudied[35].Theessentialcharacteristicofkaolinitegroupisthattheydonotswellwiththeadditionofwater.Itwasreportedthatanadsorptioncapacityof1.25mg
S.Babel,T.A.Kurniawan/JournalofHazardousMaterialsB97(2003)219–243
Table8
AdsorptioncapacityofChinaclayandwollastoniteforPb2+atdifferenttemperatures[37]TypeofadsorbentChinaclay
Temperature(K)293303313293303313
Adsorptioncapacity(mg/g)0.4110.3950.3461.6801.2901.100
G◦(kJ/mol)−8.08−4.53−3.07−2.36−1.58−1.05
Remarks
227
H◦=−77.95kJ/molS◦=−238.46J/KmolH◦=−16.40kJ/molS◦=−47.92J/Kmol
Wollastonite
ofZn2+/gwasachievedbykaoliniteandthatthemaximumremovalefficiencywasfoundtobeatpHof8.0.
Usingahomogenousmixtureofadsorbents,whichconsistsofChinaclay–flyash,wollastonite–flyash,andChinaclay–wollastonite,theremovalofcopperfromaqueoussolutionwasalsoevaluated[36].Itwasdemonstratedthatthehighestadsorptioncapacityofabout1.18mgofCu2+/gwasachievedbyflyash–wollastonite.
TheeffectoftemperatureontheremovalofleadusingChinaclayandwollastonitewasinvestigated[37].ItwasfoundthattheamountofPb2+removedishighlydependentonthetemperatureandthatthesorptionfollowsLangmuirisotherm.ItwasalsoreportedthatthemaximumadsorptioncapacityofChinaclayandwollastonitewasfoundtobe0.411and1.680mgofPb2+/g,respectively(Table8).Itwasindicatedthatahighermetalremovalisobservedatlowertemperature.Thenegativevalueofenthalpychange(H◦)forbothadsorbentsindicatedthattheadsorptionprocesswasexothermic.
In2001,theadsorptionofleadonThaikaolinandclayconsistingmainlykaoliniteandillitewasstudied[38].Itwasreportedthatthemaximumadsorptioncapacityofbothmaterialswasfoundtobe1.41and4.29mgofPb2+/g,respectively,andthattheiradsorptionfollowedbothLangmuirandFreundlichmodelsofisotherm.ItwasalsoobservedthatleadadsorptionincreasedwithanincreaseinpH.However,thepresenceofco-ionssuchasCd2+,Cr6+,Cu2+,Ni2+,andZn2+,reducestheleaduptakefromaqueoussolutionduetothefactthattheco-ionsbindstronglywithorganicmatterpresentinclaytoformacomplex.
Anothermaterialfromclaymineralstoadsorbmetalisbentonite,whichmainlyconsistsofclay,silt,andsand.Thismaterialishighlyvaluedforitstendencytoabsorbwaterintheinterlayersites.TheadsorptionofCd2+andZn2+fromaqueoussolutionwasinvestigatedusingnaturalbentonite[39].ItwasreportedthattheCd2+areadsorbedtwotimesmorethanZn2+(Table9)duetothefactthatCd2+havelesspolarizingeffectstothesurfacechargeofbentonitethanzincions.
In1995,theadsorptionofCr6+onbentoniteatdifferenttemperaturesrangingfrom20to40◦Cwasinvestigated[40].ItwasreportedthatthesorptionisfavoredathighertemperaturesincethesorptionofCr(VI)isanendothermicprocessasindicatedbypositiveenthalpychange(H◦)valuelistedinTable10.Itwasalsoobservedthatthemaximumadsorptioncapacityof0.572mgofCr6+/gbentonitewasachievedatpHof2.0.
Thesorptionofstrontiumwasalsostudiedusingbentonite[41].Itwasfoundthatanadsorptioncapacityof32.94mgofSr2+/gbentonitewasachievedatpHof8.5andthatthesorptionprocessfollowedLangmuirisotherm.Itwasalsoreportedthatthesorption
228S.Babel,T.A.Kurniawan/JournalofHazardousMaterialsB97(2003)219–243
Table9
Adsorptioncapacities(mg/g)ofclayfordifferentheavymetalsMaterialMontmorilloniteKaolinite
Sources[33][34][35][33][38][38][36][40][41][42][43][36]
1.18Cu2+
Pb2+0.68
Cd2+0.724.780.32
Zn2+4.981.25
0.121.414.29
11.41
4.54
0.57
32.94
52.91
20
Cr6+
Sr2+
IlliteBentonite
Flyash–wollastonite
processofstrontiumonbentoniteisendothermicashighermetalremovalismorefavorableathighertemperature(Table11).
In1997,theuseofbentoniteforzincremovalwasevaluated[42].Itwasfoundtobe52.91mgofZn2+/gbentoniteasgivenbyLangmuirmodel.Inthelatterstudy,outstandingremovalcapabilityofbentoniteclaytouptakePb2+wasdemonstrated[43].Itwasreportedthatadsorptioncapacitiesof20mgofPb2+/gwereachievedbybentoniteatpHof3.4.Theusageofbentonitewasalsocarriedoutforremovalofradioactivewaste[44]andcesium[45].
Whenclaymineralsareusedforindustrialapplication,theswellingfactorshouldbetakenintoaccountsinceitmaycauseremarkablepressuredropduetotheirdifferentstructuralcharacteristicsandion-exchangemechanism.Thisisdifferentfromzeolites,whichdonot
Table10
Adsorptioncapacityofbentoniteforhexavalentchromiumatdifferenttemperatures[40]Temperature(K)293303313
Adsorptioncapacity(mg/g)0.330.450.57
G◦(kJ/mol)−0.24−0.44−0.
Remarks
H◦=+5.62kJ/molS◦=+0.02kJ/Kmol
Table11
AdsorptioncapacityofbentoniteforSr2+atdifferenttemperatures[41]Temperature(K)298303308
Adsorptioncapacity(mgofSr2+/g)28.6530.4932.94
G◦(kJ/mol)−10.69−11.37−12.08
Remarks
H◦=+30.62kJ/molS◦=+0.14kJ/Kmol
S.Babel,T.A.Kurniawan/JournalofHazardousMaterialsB97(2003)219–243
Table12
Adsorptioncapacities(mg/g)ofpeatmossforsomemetalsMaterialEutrophicpeatOligotrophicpeatSphagnumpeatmoss
Sources[47][48][47][48][49][50]
Cu2+12.0719.5612.076.41
13243.9Cr6+
Cd2+20.2322.48
Zn2+11.1213.08
229
Ni2+11.1511.74
showanyswellingwhenembeddedinliquidmedium.Althoughtheremovalefficiencyofclaysforheavymetalsmaynotbeasgoodasthatofzeolites,theireasyavailabilityandlowcostmaycompensatefortheassociateddrawbacks.2.4.Peatmoss
Peatmoss,acomplexsoilmaterialcontainingligninandcelluloseasmajorconstituents,isanaturalsubstancewidelyavailableandabundant,notonlyinEurope(BritishandIreland),butalsointheUS.Peatmosshasalargesurfacearea(>200m2/g)andishighlyporoussothatitcanbeusedtobindheavymetals.PeatmossisarelativelyinexpensivematerialandcommerciallysoldatUS$0.023/kgintheUS[46].
In1986,theuseofpeattoremoveheavymetalswasinvestigated[47].Itwasobservedthatpeatmossplaysanimportantroleintreatmentofmetal-bearingindustrialeffluentssuchasCu2+,Cd2+,Zn2+,andNi2+usingeutrophicandoligotrophicpeat.Eutrophicpeatispoorincellulose,butrichinhumicsubstances.Oligotropicpeatisasphagnumone,whichismoreacidicthaneutrophicpeatandcontainsmoreorganicmatter.Bothpeatscontainabout85%ofhumicacidand15%offulvicacid.TheiradsorptioncapacityfordifferentmetalsislistedinTable12.
Usingbothpeatsmentionedpreviously,theexchangepropertiesofpeatforcopperre-movalwereinvestigated[48].Itwasreportedthatanadsorptioncapacityof19.56mgofCu2+/geutrophicpeatwasexhibitedandthateutrophicpeatshowedhigheradsorp-tioncapacitythanoligotrophicpeat(6.41mgofCu2+/g),althoughthelatterisricherincellulose.
TheremovalofCr6+usingsphagnumpeatmosswasexplored[49].Theadsorptioncapacityofsphagnumpeatmosswasfoundtobe132mgofCr6+/gatapHrangeof1.5–3.0.Themostattractiveadvantageofthisadsorbentintreatmentisthesimplicityofthesystem,lowcost,andtheabilitytoacceptawidevariationofeffluentcomposition.
Inanextendedstudy,theadsorptionofCr6+wasalsoinvestigatedusingsphagnumpeatmoss[50].ItwasfoundthattheadsorptioncapacityishigheratlowerpH.AtpHof2.0,peatisabletoadsorb20%Cr6+higher(about43.9mgofCr6+/g)thanthatatpHof2.5.Overall,theresultsmentionedpreviouslyindicatethatpeatmossisagoodadsorbentforallmetals.ItiswidelyknownthatpeatmossexhibitedahighCECandcomplexitiestowardsmetalsduetothepresenceofcarboxylic,phenolic,andhydroxylicfunctionalgroups.
230S.Babel,T.A.Kurniawan/JournalofHazardousMaterialsB97(2003)219–243
Table13
Adsorptioncapacities(mg/g)offlyashforsomemetalsMaterialFlyash
Flyash–wollastoniteFlyash–Chinaclay
Sources[51][53][52][52]
Cu2+1.39
2.82
1.18
2.920.31Cr6+
Hg2+
2.5.Flyash
Flyash,anindustrialsolidwasteofthermalpowerplantslocatedinIndia,isoneofthecheapestadsorbentshavingexcellentremovalcapabilitiesforheavymetalssuchascopperions[51].Itwasreportedthatanadsorptioncapacityof1.39mgofCu2+/gwasachievedbyflyashatpHof8.0(Table13).Itwasalsofoundthattheadsorptioncapacityincreaseswithanincreaseintemperature.
Otherstudieshavebeenconductedtoshowtheeffectivenessofflyashontheremovalof6Cr+fromaqueoussolutionusingahomogenousmixtureofflyashandwollastonite(1:1)[52].Itwasreportedthatanadsorptioncapacityof2.92mgofCr6+/gcouldbeachievedatpHof2.0andthattheadsorptionprocessfollowedLangmuirmodelofisotherm.Thismixedadsorbentperformedbetterthanflyash–Chinaclay,wherethemaximumadsorptioncapacitywasfoundtobe0.31mgofCr6+/gatpHof2.0.Thisdifferencecouldbeduetothefactthattheadsorptiveforcebetweenadsorbateandmixture(flyash–wollastonite)isstrongerthanthatoftheotherone(flyash–Chinaclayandadsorbate)sothatCr6+isadsorbedmoreeffectively.
In1987,researchontheadsorptionofmercuryusingflyashwascarriedout[53].Itwasreportedthatthemaximumadsorptioncapacityof2.82mgofHg2+/gtookplaceatapHrangeof3.5–4.5andthatadsorptionfollowedtheFreundlichmodel.
Itisalsoknownfromvariousstudiesthatflyashcouldbeeasilysolidifiedaftertheheavymetalsareadsorbed.However,sinceitalsocontainsheavymetals,thepossibilityofleachingshouldbeconsideredandevaluated.2.6.Coal
In1984,theremovalofCd2+usingGiridihcoal(GC)wasintensivelyinvestigated[54].Itwasreportedthatanadsorptioncapacityof0.91mgofCd2+/gGCwasachieved.ItwasalsofoundthatsorptionfollowedFreundlichisothermandthatitdecreasedbeyondpH10duetotheformationofsolublehydroxycomplexes.
AsimilarstudyforHg2+sorptionusingGiridihbituminouscoal(GBC)wasalsocon-ducted[55].Itwasnotedthatchemicalpretreatmentforbituminouscoalwithnitricacidsignificantlyenhancedmercurysorptiontoalevelhigherthanthatexhibitedbyactivatedcarbonintermsofinitialrateofsorptionandadsorptioncapacity.Itwasalsoreportedthatanadsorptioncapacityof10mgofHg2+/gwasobservedatapHrangeof7.0–8.5.ItwasfoundthatthesorptionreactioninvolvesarapidinteractionbetweenHg2+andactivesitesontheexternalsurfaceofcoal.
S.Babel,T.A.Kurniawan/JournalofHazardousMaterialsB97(2003)219–243
Table14
Comparativestudyofchromedyeremovalusingmixedflyashandcoal(1:1)andactivatedcarbon[56]AdsorbentsFlyash+coal(1:1)
Temperature(◦C)304050304050
Removal
efficiency(%)92.7082.4870.8098.4184.1371.43
Adsorptioncapacity(mg/g)0.760.690.612.091.720.98
Optimumcontacttime(min)100
231
Unitprice(US$/kg)0.03
Activatedcarbon
(commercialgrade)
600.82
Guptaetal.studiedtheremovalofchromedyefromaqueoussolutionsusingahomoge-nousmixedadsorbentconsistingofflyashandcoal[56].Itwasreportedthatadsorptioncapacityof0.76mgofchromedyepergramwasobservedatpHof2.0andthatitwasnearlythreetimeslessthanthatbyactivatedcarbon(Table14).ItwasalsonotedthatthesorptionprocessfollowsLangmuirisothermandthatlowertemperature,rangingfrom30to50◦C,favoredhigherremovalefficiencyofchromedyeasthesorptionprocessisexothermic.2.7.Naturaloxide
In1985,astudyontheuseofaluminiumoxidetoremoveCr6+fromaqueouswastewasconducted[57].Itwasreportedthattheultimateadsorptioncapacityof11.7mgofCr6+/galuminawasobservedatpHof4.0.ItisimportanttonotethattheadsorptivecapacityofaluminasignificantlyreducedinthepresenceofCN−anions.Itcanbeexplainedduetothefactthatcyanidehasastronganionicinfluenceuponthesorptioncharacteristicsofalumina.Therefore,CN−anionsarecompetitivelyadsorbedcoveringthesurfacesitesofalumina,whichinturnpreventtheCr6+tobeadsorbedontheinternalsurfaceofadsorbent.
TheremovalofPb2+andCd2+fromaqueoussolutionsusingaluminiumoxideandgoethite,anironoxidewasalsoexplored[58].ItwasfoundthatgoethiteexhibitsabettersorptioncapacityforbothionsthanalumuniumoxideandthattheuptakeofPb2+ishigherthanthatofCd2+(Table15).
AfurtherstudywasconductedusingironoxidecoatedwithsandtoremoveCr6+[59,60].Itwasreportedthatthisadsorbentwasfoundtobeeffectiveforremovingmetalfromsolutionandthatabout99%of0.038mMCr6+removalwasachievedconsistently[59].Incolumnoperation,itwasnotedthatthisadsorbentshowedgoodperformanceintreating
Table15
Adsorptioncapacities(mg/g)ofnaturaloxidesforsomemetalsMaterialAluminiumoxideFerricoxide
Sources[57][58][58]
Cd2+3172
Pb2+33230
Cr6+11.7
232S.Babel,T.A.Kurniawan/JournalofHazardousMaterialsB97(2003)219–243
cadmium-platingwastes,butpoorintreatingchromium-platingwaste[60].Itwasalsoreportedthatcadmium-platingwasteisadsorbed28%higherthanthatofchromium(about2.70mg/l).
In1996,theremovalofarsenicionsfromgroundwaterinhometreatmentunitsusingironoxidecoatedwithsandwasinvestigated[61].ItwasreportedthatthisadsorbentwasapromisingmediumtoremoveAs3+andAs5+fromgroundwatersinceitcouldremoveabout80–85%of1.0ppmarsenicsolution.TheprocessitselfcostsUS$8toproduce700–800lwaterfreefromanyarseniccompound.
Theuseofmanganeseoxide,(costaboutUS$0.05/kg),forremovingarseniccompoundsfromgroundwaterwasdemonstrated[62].Removalefficiencyofalmost100%wasreportedforbothAs3+andAs5+atapHrangeof2.0–8.0.ItwasalsofoundthatthepresenceofbivalentcationssuchasNi2+,Co2+,andMg2+ingroundwaterenhancestheadsorptioncapacityofmanganeseoxideduetothefactthattheseco-ionsprovideaframeworktowhichthemetalionscanbeaffixedbythesurfaceofadsorbent.2.8.Industrialwaste
Iron(III)hydroxidewasteisoneofwastematerialfromfertilizerindustries.IthasbeenextensivelyinvestigatedforremovingCr6+fromwastewater[63].Itwasreportedthatthemaximumadsorptioncapacityofiron(III)hydroxidewasfoundtobe0.47mgofCr6+/gatpHof5.6.Thisresultisnotinagreementwiththepreviousstudy[],whichobservedthatHCrO4−iseffectivelyadsorbedatpHof8.5.ThisdifferencecanbeexplainedduetothefactthatadsorptionofCr6+inthelatterstudyissuppressedbythepresenceofbothSO42−andSCN−anions,whichcompeteforadsorptionsites.
Wasteslurryisalsooneoftheindustrialby-productsgeneratedinfertilizerplantshowinggoodsorptivecapacities.In19,theuseofwasteslurrytoremoveCu2+,Cr6+,Hg2+,andPb2+fromaqueoussolutionwasinvestigated[65].ItwasreportedthatthisproductexhibitsoutstandingadsorptioncapacityforCr6+,Hg2+,andPb2+(Table16).Asimi-larstudyevaluatedalsotheremovalofCu2+andCd2+usingwasteslurrygeneratedinseafoodprocessing[66].Theadsorptioncapacityofwasteslurrywasfoundtobe20.97and15.73mg/gforCu2+andCd2+,respectively.
Table16
Adsorptioncapacitiesofindustrialwaste(mg/g)MaterialWasteslurryIron(III)hydroxideLignin
Blast-furnaceslagSawdust
ActivatedredmudBagasseflyash
Sources[65][66][63][67][69][70][73][72][71]
160
1.6260
Ni2+
Cu2+20.97
0.47
186540
13.80
95
7.5
Pb2+1030
Hg2+560
Cr6+0
15.73
Zn2+
Cd2+
S.Babel,T.A.Kurniawan/JournalofHazardousMaterialsB97(2003)219–243
Table17
Metalsuptakebyligninatdifferenttemperatures[67]Typeofmetal
Temperature(K)303
Pb2+Zn2+
158673.24
313186594.83
G◦(kJ/mol)30−26.17−32.49
40−28.47−36.79
Remarks
233
H◦=+43.6kJ/mol,S◦=0.23kJ/KmolH◦=+97.8kJ/mol,S◦=0.43kJ/Kmol
In1994,researchontheadsorptionofPb2+andZn2+ontoligninextractedfromblackliquorwascarriedout[67].Blackliquor,awasteproductoriginatedfrompaperindustry,couldbepurchasedatUS$1.00/tonandthelignincouldbeprocessedforUS$60/t,com-parabletoactivatedcarbonsoldatUS$100/t.ItwasreportedthattheadsorptioncapacityofligninforbothPb2+andZn2+wasfoundtobe1865and95mg/g,respectively,at40◦C.Resultsindicatedthatthehighadsorptioncapacityofligninisduetothepresenceofpoly-hydricphenolgroupsonthesurfaceoflignin.Itwasalsoindicatedthattheadsorptionisanendothermicprocesssinceahigherremovalwasfavoredathighertemperature(Table17).Anotherlow-costadsorbentshowingcapabilitytoadsorbheavymetalsisblast-furnaceslag,anindustrialby-productgeneratedinsteelplants.In1996,thesorptionofCu2+,Ni2+,andZn2+usingblast-furnaceslagwasstudied[68].Itwasfoundthatmetalionssorptiontakesplaceintheformofhydro–oxocomplexesandthatthehighsorptioncapacityisrelatedtotheformationofsolublecompoundsontheinternalsurfaceofadsorbent.
AfurtherstudywasalsoconductedtoinvestigatetheremovalofPb2+andCr6+usingblast-furnaceslagsoldatUS$38/t[69].Itwasfoundthatthemaximummetalsuptakeobservedunderidenticalconditionsis40and7.5mg/gofPb2+andCr6+,respectively.Itcanbeconcludedthatitsremovalperformanceiscomparabletothecheapestcommercialactivatedcarbon(costaboutUS$1000/t),as1gofactivatedcarboncanadsorb32.4mgofPb2+.
Theroleofsawdust,collectedfromatimberworkingshop,forcopperremovalwasevaluated[70].Itwasreportedthatanadsorptioncapacityof13.80mgofCu2+/gsawdustwasachieved.Itwassuggestedthatsawdustisagoodadsorbentforcopperremoval.
Theuseofbagasseflyash,anindustrialwastegeneratedinthesugarindustry,toremoveCr6+fromelectroplatingwastewaterwasinvestigated[71].FromtheTable18,itwasfoundthatthesorptioncapacitydecreaseswithanincreaseintemperatureastheadsorptionprocessisexothermic.ItwasalsoreportedthattheadsorptionofCr6+onbagasseflyashfollowedbothFreundlichandLangmuirisothermandthatthesorptioncapacityofbagasseflyashwasfoundtobe260mgofCr6+/gasgivenbytheLangmuirmodel.
Table18
Hexavalentchromiumuptakebybagasseflyashatdifferenttemperatures[71]Temperature(K)303313
Adsorptioncapacity(mg/g)260.00123.76
G◦(kJ/mol)−16.26−15.14
Remarks
H◦=+50.43kJ/molS◦=−112.76kJ/Kmol
234S.Babel,T.A.Kurniawan/JournalofHazardousMaterialsB97(2003)219–243
In1999,researchontheusageofactivatedredmudtoadsorbhexavalentchromiumfromaqueoussolutionwascarriedout[72].Redmud,aby-productofthealuminumindustry,iscomposedmainlyoftheparticlesofsilica,aluminium,iron,andtitaniumoxide.Itwasfoundthatanadsorptioncapacityof1.6mgofCr6+/gredmudwasachievedatpHof5.2.However,theadsorptioncapacityofredmudwassignificantlydifferentfromthatobtainedinapreviousstudy[73],whichinvestigatedtheuseofredmudforNi2+removal.Itwasreportedthatanadsorptioncapacityof160mgofNi2+/gredmudwasaccomplished.Itcanbeexplainedduetothefactthattherewaspretreatmentforredmud.Suchpretreatment,ofcourse,couldincreaseitseffectivenesstoadsorbthetargetedmetalandconsequently,redmudhasahighercationexchangecapacitywithNi2+.2.9.Miscellaneousadsorbents
Otherlow-costadsorbentshavebeenstudiedlessextensivelysuchasxanthate,ricehuskcarbon(RHC),andcoconutshell.Xanthateisoneoftheeffectivelow-costadsorbents.Itisagroupofsulfur-bearingcompounds,whichhaveahighaffinityforheavymetalsandformedwhenanorganichydroxyl-containingsubstratereactswithcarbondisulfide.AstudyconductedbyTareetal.comparedtheremovalperformanceofsolubleandinsolublestarchxanthateforheavymetalsuchasCd2+andCr3+[74].Itwasfoundthattheperformanceofinsolublestarchxanthateisbetterintermsofadsorptioncapacityandeaseofoperation.ItwasalsoreportedthatsolublestarchxanthatescostonlyUS$1.0/kg.
TheuseofRHCforremovingCr6+wasalsodemonstrated[75].Theactivatedcarbonwasderivedfromricehuskusingcarbonizationwithsulfuricacid.ThemaximumadsorptioncapacityofRHCwasfoundtobe45.6mgofCr6+/gatpH2.5.
Alaertsetal.[76]reportedthatcoconutshell-basedactivatedcarboncouldbeusedfor6Cr+removal.ItwasshownthatoptimumchromiumremovalwasachievedatpH<7.0.ItwasalsofoundthatremovalefficiencyincreaseswithadecreaseinchromiumconcentrationandthattheadsorptionfollowstheFreundlichisotherm.
In2000,theuseofactivatedaluminatoremovearseniteandarsenatefromgroundwaterwasstudied[77].ItwasreportedthattheuptakeofarseniteismuchlessthanthatofarsenateforaluminagrainatoptimumpH.Theadsorptioncapacityofaluminagrainforarseniteandarsenatewerefoundtobe3.48and12.34mg/gatpH6.9and2.6,respectively.ThedifferencemaybeduetothefactthatundermostpHconditionsfornaturalwater,arsenateispresentinnegativelyionicformandarseniteisinnon-ionicform.
Ajmaletal.[78]carriedoutanadsorptionstudyonCitrusreticulata,anagriculturalwasteoriginatedfromthefruitpeeloforange,fortheremovalofNi2+fromelectroplatingwastewater.ItwasreportedthatmaximumremovalofNi2+occurredatpHof6.0andthattheadsorptionfollowedtheLangmuirisotherm.Itwasalsofoundthatanadsorptioncapacityof158mgofNi2+/gwasachievedbyCitrusreticulataat50◦CandthatthesorptionofNi2+wasendothermic,asshownbythenegativevalueoffreeenergy(G◦)(Table19).Itcanbeconcludedthattheadsorptioncapacityofthewasteincreaseswithanincreaseintemperature.In2002,thepotentialofParthenium,anIndianagriculturalwaste,forremovingNi2+fromaqueoussolutionwasalsoinvestigated[79].ItwasreportedthattheadsorptioncapacityofPartheniumwasfoundtobesignificantlylower(about54.35mgofNi2+/g)thanthepreviousstudy[78],althoughbothareagriculturalwastes.
S.Babel,T.A.Kurniawan/JournalofHazardousMaterialsB97(2003)219–243
Table19
AdsorptioncapacityofCitrusreticulataforNi2+atdifferenttemperatures[78]Temperature(K)303313323
Adsorptioncapacity(mg/g)80119158
G◦(kJ/mol)−8.24−8.95−9.49
Remarks
235
S◦=−0.06kJ/KmolH◦=10.37kJ/mol
AcomparativestudyontheremovalofCr6+fromaqueoussolutionwasalsocarriedoutusinglow-costadsorbentsderivedfromusedtyres(TAC),sawdust(SPC),andgranularactivatedcarbon(GAC)typeFiltrasorb400[80].ItwasfoundthattheadsorptioncapacitiesofTACarecomparabletothatofGACatoptimumpHof2.0(Table20).However,theadsorptioncapacityofSPCissignificantlylowerthanthatofbothTACandGAC.ItcanbeexplainedduetothefactthatbothTACandGAChavesmallerparticlesize(0.2mm)thanSPC(0.65mm).SuchreductioninparticlesizeofadsorbentsincreasesitssurfaceareaformetaladsorptionanditresultsinhigherremovalefficiencyonCr6+.ItwasalsoindicatedthattheadsorptionofCr6+wasmorefavorableathighertemperature.
TheuseofdiatomitetoremoveCr6+fromaqueoussolutionwasdemonstratedaswell[81].Microemulsionstreateddiatomitearequiteefficientinremovalprocessofmetallicions.FromTable21,itwasreportedthatanadsorptioncapacityof1.68mgofCr6+/gdiatomitewasachievedatpHof2.95.
Aninvestigationontheuseofspheroidalcellulosetoremovechromiumwasalsocon-ductedinChina[82].Celluloseisthemostabundantamongrenewableandnaturalpolymersandithasthreereactivehydroxylgroups.Theadsorptioncapacityofspheroidalcellulosewasfoundtobe73.46mgofCr6+/gatpHof6.0.Thisinvestigationisusefultodevelopadvancedtechnologyforwastewatertreatmentfacilitysincetheprocessiseconomicallyfeasibleandeasytocarryout.PresentlyitsmarketpriceisaboutUS$1.07/kg.2.10.Activatedcarbon
Basedonitssizeandshape,activatedcarbonisclassifiedintofourtypes:powder(PAC),granular(GAC),fibrous(ACF),andclothe(ACC).Duetothedifferentsourcesofraw
Table20
Comparisonoftheadsorptioncapacitiesbetweenlow-costadsorbents(TACandSPC)andGACatdifferenttemperatures[80]Temperature(◦C)22
TypeofadsorbentTACSPCGACTACSPCGACTACSPCGAC
Adsorptioncapacity(mg/g)48.081.9344.4455.252.18.5458.482.2953.19
G◦(kJ/mol)−12.33−1.17−2.37−12.92−3.30−4.35−13.86−5.06−6.94
30
38
236S.Babel,T.A.Kurniawan/JournalofHazardousMaterialsB97(2003)219–243
Table21
Adsorptioncapacities(mg/g)ofmiscellaneousadsorbentsMaterial
Cellulosexanthate
SolublestarchxanthatesRicehuskcarbonActivatedaluminaDiatomite
SpheroidalcelluloseAgriculturalwaste(Citrusreticulata)PartheniumWastetyreSawdust
Source[74][74][75][77][81][82][78][79][80][80]
Cd2+19.8833.27
Cr3+17.57
45.6
3.48
1.6873.46
15854.35
58.482.29
12.34
Cr6+
As3+
As5+
Ni2+
materials,theextentofchemicalactivation,andthephysicochemicalcharacteristics;eachtypeofactivatedcarbonhasitsspecificapplicationaswellasinherentadvantagesanddisadvantagesinwastewatertreatment.
Althoughasignificantnumberoflow-costadsorbentsfromvariousmaterialshavebeenfound,commercialactivatedcarbon(CAC)hasstillbeenusedintensivelytoday.Alargenumberofresearchersarestillstudyingtheuseofactivatedcarbonforremovingheavymetalssuchasmercury[83],copper[84],lead[85],chromium[86–91],cadmium[92,93],Ni[94,95],zinc[96–98],andlithium[99].Recentlythemarketpriceofactivatedcarbonforindustrialgradeisconsideredtobeveryexpensive(aboutUS$20–22.00/kg),dependingonthequalityofactivatedcarbonitself[100].
VarioustypesofCACforheavymetalsremovalhavebeenreported.In1984,theremovalefficiencyofmercuryusingdifferentbrandsofPACsuchasNucharSAandSNwasevalu-ated[83].Itwasreportedthatabout99–100%oftotal0.2mMHg2+removalwasattainedbyboththetypesatpHof4.0–5.0.
AnothersimilarresearchwascarriedouttocomparethephenomenonofcopperandcobaltadsorptionbyGACfromaqueoussolution[84].ItwasreportedthattheremovalcapabilityofCACforbothmetalswasfoundtobesignificantlydifferent.ItwasalsodemonstratedthatatpH4.0,GACcouldremove99%of10ppmofcobaltsolution,butonly93%ofcoppersolutionatthesameconcentration.
TheuseofGACforleadremovalwasalsoevaluated[85].Itwasdemonstratedthattheadsorptioncapacityofactivatedcarbonwasfoundtobe30mgofPb2+/gandthattheamountofPb2+notremovedcorrespondedtotheamountthatwascomplexedbyEDTA.
TheuseofactivatedcarbonforCr6+removalwasalsointensivelyinvestigatedinrecentyears.In1995,theremovalefficiencyofdifferenttypesofPACpreparedfromdifferentrawmaterialssuchasleather,olivestone,andalmondshellwasevaluated[86].Itwasindicatedthattheextentoftheadsorptionprocessdependsonthepretreatmentofactivatedcarbonandthatthehighestremovalperformancewasobtainedwiththosepreparedbyphysicalactivation.ItwasalsoreportedthatatpHof1.0,theretentionofCr6+wasaffectedbyitsreductiontoCr3+.
S.Babel,T.A.Kurniawan/JournalofHazardousMaterialsB97(2003)219–243
Table22
Adsorptioncapacities(mg/g)foractivatedcarbonTypeofactivatedcarbonPAC-NucharSAGAC-HD400GAC-CGAC
GAC-Filtrasorb400
Source[83][99][85][97][98][87][80][][91][92][][93][95][94][96]
30
6.8414553.190.18
30
8
0.13
146
40
210
2
3.75
930
1.90
38
Cr6+
Cr3+
Pb2+
Zn2+
Cd2+
Ni2+
Cu2+
Li+0.45
237
Hg2+40.12
GAC-LB830As-receivedACF
OxidizedACFACC
65
In1996,theremovalofCr6+fromaqueoussolutionusingGACtypeFiltrasorb400wasalsostudied[87].Itwasreportedthatanadsorptioncapacityof145mgofCr6+/gwasachievedatapHrangeof2.5–3.0.Thisresultisnotinagreementwiththatobtainedinthelatterstudy[]conductingasimilarcomparativestudyusingactivatedcarbonLB830andFiltrasorb400.ItwasreportedthatthemaximumadsorptioncapacityofFiltrasorb400inthelatterstudyisonly0.18mgofCr6+/g(Table22).
ChemicalmodificationonthesurfaceofGACwithoxidizingagentsuchasnitricacidwasalsoconductedtoimproveitsadsorptioncapacity[90].Itwasfoundthattheamountofchemisorbedoxygenonthecarbonsurfaceincreasedafteroxidativetreatment.ItisinterestingtonotethattheadsorptioncapacityofCr3+ontheoxidizedcarbonisenhancedabout300%of30mgofCr3+/g.ThismaybeattributedtothefactthatthesurfaceofoxidizedGAChasalargernegativechargethanthatofnon-oxidizedone.Duetotheelectrostaticattractiveinteractionsbetweenthem,thechangeinthenegativechargeonthecarbonsurface,andthatofthepositivechargeofCr3+inthesolutionfavormoreadsorptionofmetalions.
AnothersimilarresearchwasalsoconductedtoevaluatetheremovalofCr6+byACFsplatedwithcoppermetal[91].ItwasreportedthattheintroductionofCu2+onACFssignificantlyleadtoanincreaseinthesurfacebasicity,resultingintheadsorptioncapacityofCr6+fromanaqueoussolutionregardlessofadecreaseinsurfacearea.Itwaspointedoutthattheadsorptionofchromiumionswasessentiallydependentonsurfaceproperties,ratherthanbysurfaceareaandporosityofACFs.
TheadsorptionofCd2+fromtheaqueoussolutionusingGACwasalsostudied[92].ItwasreportedthatmaximumadsorptioncapacityofGACwasfoundtobe8mgofCd2+/gatpH8.0.ItwasalsoobservedthattheamountofCd2+adsorbedwasreducedaboutthree
238S.Babel,T.A.Kurniawan/JournalofHazardousMaterialsB97(2003)219–243
timesbyincreasingthetemperaturefrom10to40◦C.Thisindicatedthattheadsorptionprocesswasexothermicinnature.
TheoxidativeeffectsofnitricacidforACFswerealsoinvestigatedforCd2+removal[93].DuetomoreelectrostaticattractionsbetweenthepositivechargeofCd2+andthenegativechargeofACFs,itwasfoundthatasignificantincreaseinion-exchangecapacitywasachievedafteroxidativetreatment.ThemaximumadsorptioncapacityofACFswasfoundtobe146mgofCd2+/gatpH5.0–6.0.
TheuseofoxidizedACFsforNi2+andCu2+adsorptionwasalsoevaluatedandcomparedtothatofas-receivedACFs[94,95].ItwasdemonstratedthattheadsorptioncapacityofoxidizedACFsonboththemetalswasindicatedtobesuperiortothatofas-receivedACFsandthattheadsorptioncapacityofACFswashigherforCu2+thanthatofNi2+(Table22).ThisindicatedthatoxidativetreatmentincreasestheacidityofthesurfacefunctionalgroupofACFssothatmoreelectrostaticattractionsoccurbetweenthenegativechargeofACFsandthepositivechargeofcations.
Inthelatestresearch[96]investigatingtheadsorptionofvariousheavymetalssuchasZn2+,Cd2+,andHg2+ontoACC,itwasreportedthattheadsorptioncapacityofACCwasfoundtobesignificantlyhigherforHg2+thanthatforZn2+and/orCd2+(Table22).ItwasalsoindicatedthattheamountofadsorbedmetalsincreaseswithanincreaseinpH.
OthersimilarworkforZn2+removalwasalsoconductedusingdifferenttypesofGACsuchasC,F-300,F-400,andCentaurHSL[97].ItwasfoundthatChashigheradsorptioncapacityforZn2+thanothertypesofGAC.ItwasalsoreportedthattheadsorptioncapacityofGACtypeCisabout18mgofZn2+/gatpH7.0.
ChemicalmodificationsofCACusingtetrabutylammoniumiodide(TBAI)andsodiumdiethyldithiocarbamate(SDDC)werealsocarriedout[98].ItwasreportedthattheTBA-carbonadsorbentwasfoundtohaveaneffectiveadsorptioncapacityofapproximatelyfivetimesthanthatofas-receivedcarbonandthatusingSDDC–carboncolumn,heavymetalssuchasCu2+,Zn2+,andCr6+couldbeeliminatedwitharemovalcapacityof38,9.9,and6.84mg/g,respectively.ItwasalsosuggestedthatthetechniqueofTBAandSDDCmodificationsoptimizetheexistingpropertiesofactivatedcarbon,givinggreaterremovalcapacitytotheas-receivedactivatedcarbon.
In1996,theuseofPACforLi+removalwasevaluatedusinganelectriccurrent[99].ItwasreportedthattheadsorptioncapacityofPACisverylow(about0.45mgofLi+/g).ThiscanbeexplainedduetothefactthatelectrochemicalpolarizationofthecarbonmaterialmodifiesthesurfacefunctionalgroupsandexertsasignificantinfluenceonthesorptionofLi+.Thus,indicatingthatthesurfacechemicaleffectsappeartodominate,althoughthespecificsurfaceareamaybeimportant.
3.Comparisonofcommercialactivatedcarbonwithlow-costadsorbents
Fig.1illustratestheadsorptioncapacityofsomeoutstandingadsorbentsmentionedintheabovestudy.ItisevidentfromourliteraturesurveyandFig.1thatsomelow-costadsorbentssuchaschitosan,zeolites,wasteslurry,andligninhavedemonstratedoutstandingremovalcapabilitiesforheavymetals,whichisfarbetterthancommercialactivatedcarbon.Mosttoxicheavymetalssuchascopper,zinc,cadmium,andmercuryions,forinstance,have
Fig.1.Summaryofsomeadsorbentswithhighadsorptioncapacities(mg/g).
S.Babel,T.A.Kurniawan/JournalofHazardousMaterialsB97(2003)219–243239240S.Babel,T.A.Kurniawan/JournalofHazardousMaterialsB97(2003)219–243
beeneffectivelyremovedfromhighlydilutedsolutionsusingchitosan.EvenforCr6+,Hg2+,Cu2+,andCd2+removal,chitosanperformssignificantlybetterthananytypesofcommercialactivatedcarbon(CAC)intermsofmetal-loadingcapacity.However,chitosanisconsideredasthemostexpensivealternativeadsorbentsinceitsmarketpriceisnearlycomparabletothatofCAC.RecentlymarketpriceofchitosanisUS$16/kgandthatofCAC(dependingonitsgradeandquality)isaboutUS$20.0–22.0/kg.
Clinoptilolite,oneofabundantnaturalzeolitesspecies,isagoodlow-costadsorbentforcadmiumandleadremoval.Nevertheless,chabaziteshasbettercationexchangecapacitythanclinoptilolite.BothPb2+andCd2+areadsorbedbychabazitesnearlytwotimesmorethanthosebyclinoptilolite.Althoughthezeolites’currentcommercialprice(lessthanUS$1.0/kg)isnowconsiderednearly20timescheaper,theadsorptioncapacityofchabazitesforCd2+iscomparabletothatofCAC.Infact,itsadsorptioncapacityforPb2+isfourtimeshigherthanthatofCACtypeHD400.
WasteslurryisanotheralternativeadsorbentthatisabletoremoveCr6+,Pb2+,andHg2+effectivelyfromaqueoussolutionsatlowcost.AsforCr6+removal,theadsorptioncapacityofwasteslurryisthehighestamongotherlow-costadsorbentsandisnearlyfourtimeshigherthanthatofCACtypeFiltrasorb400.Infact,itsadsorptioncapacityforPb2+andHg2+ismorethan20and10timeshigherthanthatofanytypeofCAC,respectively.However,thereisnoavailableinformationforthecommercialpriceofwasteslurryasitcanbeobtainedforfreeoratinexpensivecostfromfertilizerplants.
Lastbutnottheleast,ligninisconsideredasthebestlow-costadsorbentforleadandzincremoval.Ligninisabletoremoveboththeionseffectivelyundertemperaturesrang-ingfrom30to40◦C.ItadsorbsPb2+nearlytwotimeshigherthanwasteslurryanditsremovalcapabilityforZn2+iscomparabletothatofchitosan.EvenitsadsorptioncapacityforPb2+issignificantlymorethan30timeshigherthanthatofCAC.Inspiteofitsinex-pensivecommercialprice(aboutUS$0.06/kgin1994),ligninundoubtedlyhasexcellentmetal-adsorbentbindingcapacities,whicharecomparabletothatofchitosan.Moreover,theadsorptioncapacityofligninforPb2+isthemostoutstandingcomparedtoCACandotherlow-costadsorbentssuchaschitosan,zeolites,orwasteslurry.Duetothereasonsmentionedpreviously,acost–benefitanalysisofusingligninforleadandzincremovalinwastewatertreatmentapplicationsneedstobeconductedtojudgetheeconomicfeasibilityofitspracticaluseandthepotentialforitscommercialapplicationsinthefuture.4.Conclusionsandrecommendations
Awiderangeoflow-costadsorbentshasbeenstudiedworldwideforheavymetalremoval.Itisevidentfromourliteraturesurveythatinexpensiveandlocallyavailablematerialscouldbeusedinsteadofcommercialactivatedcarbon.
Afewadsorbentsthatstandoutforhighadsorptioncapacitiesarechitosan(815,273,250,222,75mg/gofHg2+,Cr6+,Cd2+,Cu2+,andZn2+,respectively),zeolites(175and137mg/gofPb2+andCd2+,respectively),wasteslurry(1030,560,0mg/gofPb2+,Hg2+,andCr6+,respectively),andlignin(1865and95mg/gofPb2+andZn2+,respec-tively).Theseadsorbentsareefficientandcanbeeffectivelyusedforinorganiceffluenttreatmentcontainingmetalions.
S.Babel,T.A.Kurniawan/JournalofHazardousMaterialsB97(2003)219–243241
Amongtheircurrentcommercialprices,zeolitesareundoubtedlythemostinexpensivealternativeadsorbentscomparedtoothers.Itisconsidered15timescheaperthanchitosan(US$15.43/kg).Itisexpectedthatthepriceofchitosanwillslowlygodownsincemoreindustriesworldwidemayconsiderusingitinwastewatertreatmentduetoitshigherremovalefficiencies.
Toimproveremovalefficienciesandadsorptioncapacities,chemicalmodificationsoflow-costadsorbentssuchascoconutshellcharcoalneedstobeconductedusingcoatingprocess.Coconutshellcharcoalhaslowremovalefficienciesandadsorptioncapacitiesformetalsremoval.Itisexpectedthatcoatingcoconutshellcharcoalwithchitosanmaysignificantlyimproveitsremovalperformance.
Sofar,costinformationofotheradsorbentssuchasflyash,coal,ferricoxide,andwasteslurryisseldomreportedinanyofthepublicationssincetheexpenseofindividualadsorbentsvaries,dependingontheprocessingrequiredandlocalavailability.Thissituationmakesacomprehensivecomparisonamongalternativeadsorbentsdifficulttomaterializeduetoinconsistenciesindatapresentation.
Inspiteofthescarcityofconsistentcostinformation,thewidespreadusesoflow-costadsorbentsinindustriesforwastewatertreatmentapplicationstodayarestronglyrecom-mendedduetotheirlocalavailability,technicalfeasibility,engineeringapplicability,andcosteffectiveness.Iflow-costadsorbentssuchaschitosan,zeolites,wasteslurry,andligninperformwellinremovingheavymetalsatlowcost,theycanbeadoptedandwidelyusedinindustriesnotonlytominimizecostinefficiency,butalsoimproveprofitability.Duetothereasonsmentionedpreviously,acost–benefitanalysisofusinglow-costadsorbentsforheavymetalremovalneedstobeconductedtojudgetheeconomicfeasibilityofitspracticaluseinwastewatertreatmentapplicationstoday.
Lastbutnottheleast,ifthealternativeadsorbentsmentionedpreviouslyarefoundhighlyefficientforheavymetalremoval,notonlytheindustries,butthelivingorganismsandthesurroundingenvironmentwillbealsobenefitedfromthepotentialtoxicityduetoheavymetal.Thus,theuseoflow-costadsorbentsmaycontributetothesustainabilityofthesurroundingenvironment.Undoubtedlylow-costadsorbentsofferalotofpromisingbenefitsforcommercialpurposeinthefuture.
Acknowledgements
Theauthorsarepersonallythankfultothereviewersfortheircriticalcommentsandusefulsuggestions,whichsignificantlyimprovedthequalityoftheirmanuscript.References
[1]G.L.Rorrer,J.D.Way,ChitosanBeadstoRemoveHeavyMetalfromWastewater,Dalwoo-ChitoSan,May
2002,ftp://dalwoo.com/chitosan/rorrer.html.
[2]I.N.Jha,L.Iyengar,A.V.S.P.Rao,J.Environ.Eng.114(1988)962–974.[3]G.McKay,H.S.Blair,A.Findon,Ind.J.Chem.28A(19)356–360.
[4]C.Peniche-Covas,L.W.Alvarez,W.Arguella-Monal,J.Appl.Polym.Sci.46(1991)1147–1150.[5]P.Udaybhaskar,L.Iyengar,A.V.S.P.Rao,J.Appl.Polym.Sci.39(1990)739–747.
242S.Babel,T.A.Kurniawan/JournalofHazardousMaterialsB97(2003)219–243
[6]C.-P.Huang,Y.-C.Chung,M.-R.Liou,J.Hazard.Mater.45(1996)265–277.[7]W.S.WanNgah,I.M.Isa,J.Appl.Polym.Sci.67(1998)1067–1070.
[8]A.P.Annachhatre,N.N.Win,S.Chandrkrachang,in:W.J.Stevens,M.S.Rao,S.Chandrkrachang(Eds.),
ProceedingsoftheSecondAsia-PacificSymposium,AsianInstituteofTechnology,Bangkok,Thailand,1996,pp.169–173.
[9]E.Guibal,I.Saucedo,M.Janssin-Charrier,B.Delanghe,P.LeCloirec,WaterSci.Tech.30(1994)183–190.[10]E.Guibal,A.Larkin,Y.Contandriopoulos,D.Gillet,in:C.Rong-Huei,C.Hsing-Chen(Eds.),Proceedings
oftheThirdAsia-PacificSymposiumonChitinandChitosan,NationalTaiwanOceanUniversity,Keelung,Taiwan,1998,pp.456–461.
[11]T.-Y.Hsien,G.-L.Rorrer,in:R.-H.Chen,H.-S.Chen(Eds.),ProceedingsoftheThirdAsia-Pacific
SymposiumonChitinandChitosan,NationalTaiwanOceanUniversity,Keelung,Taiwan,1998,pp.111–120.[12]R.Schmuhl,H.M.Krieg,K.Keizer,WaterS.A.27(2001)1–7.
[13]W.S.WanNgah,C.S.Endud,R.Mayanar,ReactiveFunctionalPolym.J.50(2002)181–190.[14]D.C.Grant,M.C.Skriba,A.K.Saha,Environ.Prog.6(1987)104–109.
[15]R.Virta,USGSMineralsInformation,USGeologicalSurveyMineralCommoditySummary2000,January
2001,ftp://minerals.usgs.gov/minerals/pubs/commodity/zeolites/zeomyb00.pdf.
[16]M.Vaca-Mier,R.L.Callejas,R.Gehr,B.E.J.Cisneros,P.J.J.Alvarez,WaterRes.35(2001)373–378.[17]M.J.Zamzow,B.R.Eichbaum,Sep.Sci.Tech.25(1990)1555–1569.
[18]E.Malliou,M.Malamis,P.O.Sakellarides,WaterSci.Technol.25(1992)133–138.[19]E.Malliou,M.Loizidou,N.Spyrellis,Sci.TotalEnviron.149(1994)139–144.[20]A.Groffman,S.Peterson,D.Brookins,WaterEnviron.Technol.4(1992)54–59.[21]S.K.Ouki,C.R.Cheeseman,R.Perry,Environ.Sci.Technol.27(1993)1108–1116.[22]M.J.Semmens,W.P.Martin,WaterRes.22(1988)537–542.
[23]L.Curkovic,S.C.Stefanovic,T.Filipan,WaterRes.31(1997)1379–1382.
[24]V.J.Inglezakis,C.D.Papadeas,M.D.Loizidou,H.P.Grigoropouliou,Environ.Technol.22(2001)75–82.[25]S.K.Ouki,M.Kavanagh,WasteManage.Res.15(1997)383–394.
[26]M.Vaca-Mier,R.L.Callejas,R.Gehr,B.E.J.Cisneros,P.J.J.Alvarez,WaterRes.35(2001)373–378.[27]M.Pansini,C.Colella,M.De’Gennaro,Desalination83(1991)145–157.
[28]K.M.Ibrahim,T.NasserEd-Deen,H.Khoury,Environ.Geol.41(2002)547–551.
[29]R.Virta,USGSMineralsInformation,USGeologicalSurveyMineralCommoditySummary2002,January
2002,ftp://minerals.usgs.gov/minerals/pubs/commodity/clays/190496.pdf.
[30]M.F.Brigatti,G.Campana,L.Medici,L.Poppi,ClaysClayMiner.31(1996)477–483.[31]S.Staunton,M.Roubaud,ClaysClayMiner.45(1997)251–260.
[32]D.R.Turner,R.T.Pabalan,F.P.Bertetti,ClaysClayMiner.46(1998)256–269.[33]S.K.Srivastava,R.Tyagi,N.Pal,Environ.Technol.Lett.10(19)275–282.[34]T.Undaybeytia,E.Morillo,C.Maqueda,ClaysClayMiner.31(1996)485–490.[35]A.K.Singh,D.P.Singh,V.N.Singh,Environ.Technol.Lett.9(1988)1153–1162.[36]K.K.Panday,G.Prasad,V.N.Singh,Environ.Technol.Lett.7(1986)547–554.[37]K.P.Yadava,B.S.Tyagi,V.N.Singh,J.Chem.Biotechnol.51(1991)47–60.
[38]V.Chantawong,N.W.Harvey,V.N.Bashkin,AsianJ.EnergyEnviron.1(2001)33–48.
[39]E.G.Pradas,M.V.Sanchez,F.C.Cruz,M.S.Viviana,M.F.Perez,J.Chem.Technol.Biotechnol.59(1994)
2–295.
[40]S.A.Khan,R.Rehman,M.A.Khan,WasteManage.15(1995)271–282.[41]S.A.Khan,R.Rehman,M.A.Khan,WasteManage.15(1995)1–650.[42]A.Mellah,S.Chegrouche,WaterRes.31(1997)621–629.[43]R.Naseem,S.S.Tahir,WaterRes.35(2001)3982–3986.[44]R.Pusch,ClaysClayMiner.37(1992)353–361.
[45]D.W.Oscarson,H.B.Hume,F.King,ClaysClayMiner.42(1994)731–736.
[46]S.M.Jasinski,USGSMineralsInformation,USGeologicalSurveyMineralCommoditySummary2001,
January2002,ftp://minerals.usgs.gov/minerals/pubs/commodity/peat/510302.pdf.[47]T.Gosset,J.L.Trancart,D.R.Thevenot,WaterRes.20(1986)21–26.[48]X.-H.Chen,T.Gosset,D.R.Thevenot,WaterRes.24(1990)1463–1471.[49]D.C.Sharma,C.F.Forster,WaterRes.27(1993)1201–1208.[50]D.C.Sharma,C.F.Forster,ProcessBiochem.30(1994)293–298.
S.Babel,T.A.Kurniawan/JournalofHazardousMaterialsB97(2003)219–243
[51][52][53][54][55][56][57][58][59][60][61][62][63][][65][66][67][68][69][70][71][72][73][74][75][76][77][78][79][80][81][82][83][84][85][86][87][88][][90][91][92]
243
K.K.Panday,G.Prasad,V.N.Singh,WaterRes.19(1985)869–873.
K.K.Panday,G.Prasad,V.N.Singh,J.Chem.Technol.Biotechnol.34A(1984)367–374.A.K.Sen,K.D.Arnab,WaterRes.21(1987)885–888.
A.K.Bhattacharya,C.Venkobachar,J.Environ.Eng.110(1984)110–122.J.Karthikeyan,M.Chaudhuri,WaterRes.20(1985)449–452.G.S.Gupta,G.Prasad,V.N.Singh,WaterRes.24(1990)45–50.D.C.Gupta,U.C.Tiwari,Ind.J.Environ.Health27(1985)205–215.
S.K.Srivastava,G.Bhattacharjee,R.Tyagi,N.Pant,N.Pal,Environ.Technol.Lett.9(1988)1173–1185.R.P.Bailey,T.Bennet,M.M.Benjamin,WaterSci.Technol.26(1992)1239–1244.J.K.Satpathy,M.Chaudhuri,WaterEnviron.Res.67(1995)788–790.A.Joshi,M.Chaudhuri,J.Environ.Eng.122(1996)769–771.
S.Chakaravarty,V.Dureja,G.Bhattacharyya,S.Maity,S.Bhattacharjee,WaterRes.36(2002)625–632.C.Namasivayam,K.Ranganathan,Environ.Pollut.82(1992)255–261.T.Aoki,M.Munemori,WaterRes.16(1982)793–796.
S.K.Srivastava,R.Tyagi,N.Pant,WaterRes.23(19)1161–1165.S.M.Lee,A.P.Davis,WaterRes.35(2001)534–540.
S.K.Srivastava,A.K.Singh,A.Sharma,Environ.Technol.15(1994)353–361.S.V.Dimitrova,WaterRes.30(1996)228–232.
S.K.Srivastava,V.K.Gupta,D.Mohan,J.Environ.Eng.123(1997)461–468.M.Ajmal,A.H.Khan,S.Ahmad,A.Ahmad,WaterRes.32(1998)3085–3091.
V.K.Gupta,D.Morhan,S.Sharma,K.T.Park,TheEnvironmentalist19(1999)129–136.J.Pradhan,S.N.Das,R.S.Thakur,J.ColloidInterf.Sci.217(1999)137–141.A.I.Zouboulis,K.A.Kydros,J.Chem.Technol.Biotechnol.58(1993)95–101.V.Tare,S.Chaudhari,M.Jawed,WaterSci.Technol.26(1992)237–246.
K.Srinivasan,N.Balasubramanian,T.V.Ramakhrisna,IndianJ.Environ.Health30(1988)376–387.G.J.Alaerts,V.Jitjaturunt,P.Kelderman,WaterSci.Technol.21(19)1701–1704.T.-F.Lin,J.-K.Wu,WaterRes.35(2000)2049–2057.
M.Ajmal,R.A.K.Rao,R.Ahmad,J.Ahmad,J.Hazard.Mater.79(2000)117–131.
K.Kadirvelu,P.Senthilkumar,K.Thamaraiselvi,V.Subburam,BioresourceTechnol.81(2002)87–90.N.K.Hamadi,X.-D.Chen,M.M.Farid,M.G.Q.Lu,Chem.Eng.J.84(2001)95–105.T.N.D.Dantas,A.A.D.Neto,M.C.P.Moura,WaterRes.35(2001)2219–2224.
M.-H.Liu,H.-Z.Hong,X.-S.Zhang,Y.Deng,W.-G.Liu,H.-Y.Zhan,WaterEnviron.Res.73(2001)322–328.C.-P.Huang,D.W.Blankkenship,WaterRes.18(1984)37–46.A.Netzer,D.E.Hughes,WaterRes.18(1984)927–933.
B.E.Reed,S.Arunachalam,J.Environ.Eng.120(1994)416–436.
M.P.Candela,J.M.Martinez,R.T.Macia,WaterRes.29(1995)2174–2180.D.C.Sharma,C.F.Forster,WaterS.A.22(1996)153–160.
S.K.Ouki,R.D.Neufeld,R.Perry,J.Chem.Technol.Biotechnol.70(1997)3–8.I.Han,M.A.Schlautman,B.Batchelor,WaterEnviron.Res.72(2000)29–39.D.Aggarwal,M.Goyal,R.C.Bansal,Carbon37(1999)19–1997.S.-J.Park,W.-Y.Jung,CarbonSci.2(2001)15–21.
R.Leyva-Ramos,J.R.Rangel-Mendez,J.Mendoza-Barron,L.Fuentes-Rubio,R.M.Guerrero-Coronado,WaterSci.Technol.35(1997)205–211.
[93]J.R.Rangel-Mendez,M.Streat,WaterRes.36(2002)1244–1252.[94]J.-W.Shim,S.-J.Park,S.-K.Ryu,Carbon39(2001)1635–12.
[95]J.W.Shim,S.M.Lee,B.S.Rhee,S.K.Ryu,in:ProceedingsoftheEuropeanCarbonConference,British
CarbonGroup,NewCastle,UK,1996,pp.242–243.
[96]B.M.Babi,S.K.Milonji,M.J.Plovina,S.Upi,B.V.Kaludjerovi,Carbon40(2002)1109–1115.
[97]R.Leyva-Ramos,L.A.B.Jacome,J.M.Barron,L.F.Rubio,R.M.G.Coronado,CarbonB90(2002)27–38.[98]L.Monser,N.Adhoum,Sep.Purif.Technol.26(2002)137–146.
[99]A.Seron,H.Bennadi,F.Beguin,E.Fracckowiak,J.L.Bretelle,M.C.Thity,T.J.Bandosz,J.Jagiello,J.A.
Schwarz,Carbon34(1996)481–487.
[100]CSIRO,ActivatedCarbon,WelcometoEnecon’sWebsite,May2002,ftp://enecon.com.au/activated.html.
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- huatuo7.cn 版权所有 湘ICP备2022005869号-9
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务