WithLatticesofArbitraryTopology
RonMacCrackenKennethI.Joy
ComputerGraphicsResearchLaboratory
DepartmentofComputerScienceUniversityofCalifornia,Davis
Abstract
Anewfree-formdeformationtechniqueispresentedthatgeneral-izespreviousmethodsbyallowing3-dimensionaldeformationlat-ticesofarbitrarytopology.ThetechniqueusesanextensionoftheCatmull-Clarksubdivisionmethodologythatsuccessivelyrefinesa3-dimensionallatticeintoasequenceoflatticesthatconvergeuni-formlytoaregionof3-dimensionalspace.Deformationofthelat-ticethenimplicitlydefinesadeformationofthespace.Anunderly-ingmodelcanbedeformedbyestablishingpositionsofthepointsofthemodelwithintheconvergingsequenceoflatticesandthentrack-ingthenewpositionsofthesepointswithinthedeformedsequenceoflattices.Thistechniqueallowsagreatervarietyofdeformablere-gionstobedefined,andthusabroaderrangeofshapedeformationscanbegenerated.
1Introduction
Efficientandintuitivemethodsforthree-dimensionalshapedesign,modification,andanimationarebecomingincreasinglyimportantareasincomputergraphics.Themodel-dependenttechniquesini-tiallyusedbydesignerstomodifysurfacesrequiredeachprimitivetypetohavedifferentparametersand/orcontrolpointsthatdefineditsshape.Modeldesignershadtoconsiderthismathematicalmodelwhenmakingthedesiredmodifications,andshapedesigncouldbedifficult–makingsimplechangestothesurfacerequiredthemod-ificationofmanysurfaceparameters.Theprocessgrewmorediffi-cultwhenlocalchanges,suchasaddingarbitrarilyshapedbumps,orglobalchanges,suchasbending,twisting,ortaperingwerenec-essary.
Thefree-formdeformations[5,6,9,19]weredesignedtodealwithsomeoftheseproblems.Thesemethodsembedanobjectinadeformableregionofspacesuchthateachpointoftheobjecthasauniqueparameterizationthatdefinesitspositionintheregion.Theregionisthenaltered,causingrecalculationofthepositionsbasedupontheirinitialparameterization.Ifadeformablespacecanbede-finedwithgreatflexibilityandwithfewcontrolpointsrelativeto
DepartmentofComputerScience,UniversityofCalifornia,DavisCA95616.Email:maccrack,joy@cs.ucdavis.edu
Permission to make digital or hard copies of part or all of this work or personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.
© 1996 ACM-0-791-746-4/96/008...$3.50
thenumberinthesurfacemodel,thencomplexmodelscomprisedofthousandsofcontrolpointscanbedeformedinmanyinterestingwayswithverylittleuser-interaction.
Barr[1]firstintroduceddeformationsbycreatingoperationsforstretching,twisting,bendingandtaperingsurfacesaroundacentralaxis(,,or).Operationsthatinvolvedmovingmanycontrolpointscouldnowbeaccomplishedwiththealteringofaslittleasoneparameter.However,thistechniquelimitsthepossibledefini-tionsofthedeformablespacetothatofasinglecoordinatesystemaboutanaxis,andrestrictsthewaysinwhichthespacecanbeal-tered-theaxiscannotbemodifiedandthedeformablespacecanonlybemodifiedbyafewparameters.
Barr’sdeformationswerefollowedbyamoregeneralizedap-proachtotheproblem,theFree-FormDeformations(FFDs)ofSederbergandParry[19].Thismethodimposesaninitialdeforma-tionlatticeonaparallelepiped,anddefinesthedeformablespaceasthetrivariateB´eziervolumedefinedbythelatticepoints.Theparal-lelepipedformofthelatticeallowspointsofanembeddedobjecttobequicklyparameterizedinthespaceofthelattice,andasthelatticeisdeformed,thedeformedpointscanbecalculatedbysimplesub-stitutionintothedefiningequationsofthetrivariatevolume.Thismethodiswidelyusedbecauseofitseaseofuseandpowertocreatemanytypesofdeformationswithlittleuser-interaction.GriessmairandPurgathofer[9]extendedthistechniquebyutilizingatrivari-ateB-Splinerepresentation.Althoughbothmethodsgivetheusermanycontrolstoalterthedeformablespace,bothSederbergandParry’sFFDsandGriessmairandPurgathofer’sdeformationtech-niqueshandleonlyaspecifictypeofspacedefinition,thatdefinedinitiallybyaparallelepipedlattice.
Inordertogeneratefree-formdeformationsforamoregenerallatticestructure,CoquillartintroducedExtendedFree-FormDefor-mations(EFFD)[5,6].ThismethodusestheinitiallatticepointstodefineanarbitrarytrivariateB´eziervolume,andallowsthecombin-ingofmanylatticestoformarbitraryshapedspaces.Modifyingthepointsofthedefininglatticecreatesadeformationofspacewhereonetrivariatevolumeisdeformedintoanother.Thisextensional-lowsagreaterinventoryofdeformablespaces,butlosessomeoftheflexibilityandstabilityofSederbergandParry’sFFDs:Whilethecornercontrolpointsofthejoinedlatticesareuser-controllable,theinternalcontrolpointsareconstrainedtopreservecontinuity;and,calculatingtheparameterizationofapointembeddedintheinitialtrivariatevolumerequiresnumericaltechniques.
ArecentdeformationtechniquedevelopedbyChangandRock-wood[4]generalizesBarr’stechniqueinadifferentmanner.In-steadofdefiningthespaceinafree-formmanner,Chang’sapproachdealswithincreasingtheflexibilityofanaxis-basedapproachbyal-lowingmodificationstotheaxisduringthedeformation.Thetech-niqueallowstheusertodefinetheaxisasaB´eziercurvewithtwouser-definedaxesateachcontrolpointofthecurve.RepeatedaffinetransformationsusingageneralizeddeCasteljauapproachareusedtodefinethedeformablespace.Thistechniqueisverypowerful,in-181
tuitive,andefficient,butagainrestrictsthewaysinwhichthespacesurroundingthecurvecanbealtered.
Thispaperintroducesafurtherextensiontothesetechniquesbyestablishingdeformationmethodsdefinedonlatticesofarbitrarytopology.Inthiscase,thedeformablespaceisdefinedbyusingavolumeanalogyofsubdivisionsurfaces[2,7,8].Inthesesubdivi-sionmethods,thelatticeisrepeatedlyrefined,creatingasequenceoflatticesthatconvergetoaregioninthree-dimensionalspace.Thisrefinementprocedureisusedtodefineapseudo-parameterizationofanembeddedpoint.Asthepointsofthelatticearemodifiedade-formationofthespaceiscreated,andtheembeddedpointscanberelocatedwithinthedeformedspace.
Thismethodhasbeenfoundtobequiteintuitiveforthedesigneranddramaticallyincreasestheinventoryoflatticesthatcanbecon-sideredinafree-formdeformation.ThetwistsandbendsofBarr[1]andthecylindricallatticesofCoquillart[5]canbeeasilysimulated.Byallowingmeshesofarbitrarytopology,thecontinuityproblemsofadjoininglatticesvirtuallydisappear.
Insection2,wegiveanoverviewofthesubdivisionmethodsthatareusedtodefinethedeformablespacefromthelattice.InourcasethesemethodsarebaseduponanextensionoftheCatmull-Clarkre-finementrulesforsurfaces[2].Insection3,wemodifytheCatmull-Clarkproceduretocontroltheboundarysurfacesandcurvesofthedeformableregion.Thisproducesadeformableregionthatcanbeintuitivelydefinedfromthelattice.Insection4wediscussthemeth-odsthatgiveacorrespondencebetweenapointembeddedinthede-formablespaceandthesequenceoflatticesgeneratedbytherefine-mentprocedure.Insection5wepresentanoverviewofthecom-pletedeformationprocedure.Implementationdetailsofthealgo-rithmarediscussedinsection6andresultsaregiveninsection7.
figures/fig1.tif
Figure1:LatticeStructures
Weallowlatticesofarbitrarytopologywiththefollowingprop-erties:
Thelatticeiswell-connected,i.e.novertexliesonanedgenotcontainingthatvertex.
Allcellsareclosed,meaningthefacescomprisingthecellsdonotformanyholes.Forexample,acubewithonefacemissingisnotavalidcell.
Notwocellsofthelatticeintersect–thatis,wewillnotcon-siderself-intersectinglattices.
2
DefiningtheDeformableSpacefromtheLattice
Alatticeisdefinedtobeasetofverticesandanassociatedsimplicialcomplexwhichspecifiestheconnectivityofthevertices.Asubdivisionmethodappliedtoalatticeisafunctionfromthesetoflatticesintoitself.Asubdivisionmethodisusuallyimplementedasasetofrefinementruleswhichdefinehowtogen-eratetheverticesoftheresultinglattice,andalsohowtoconnectthesenewvertices.Asetofrefinementrulescanberepeatedlyap-pliedtoalattice,creatingasequenceoflattices.Inmanycases,thissequencecanbemadetoconvergetoaregionof3-dimensionalspace.
Todescribethecomponentsofalattice,wewillusethefollowingterms:
Anedgeofthelatticeisdefinedbytwoverticesthatarecon-nectedinthesimplicialcomplexofthelattice.
Afaceofthelatticeisdefinedbyaminimalconnectedloopofvertices.
acellofthelatticeistheregionofspaceboundedbyasetoffaces.
Acontrolpolygonhasverticesandedges,acontrolmeshhasver-tices,edgesandfaces,andacontrollatticehasvertices,edges,facesandcells.InthebivariateB-splinecase,eachfaceofthecontrolmeshisdefinedbyfourvertices,andeachvertexofthemeshhasconnectivityfour(fouredgesradiatingfromthevertex).Inthetrivariatecase,eachcellofthecontrollatticeisdefinedbysixfacesandeachfacebyfourvertices.Eachvertexhasconnectivitysix.
Forconsistency,wewillrefertoasetofpointsthatgeneratesavolumeasalattice.Thesetofpointsgeneratingasurfacewillbecalledamesh.Thesetofpointsgeneratingacurvewillbecalledacontrolpolygon.
Figure1illustratestwosamplelattices,onebaseduponaparal-lelepipedstructureandonebaseduponacylindricalstructure.TheuniformB-splinecurves,surfacesandvolumescanbede-finedbysubdivisionmethods.Inthecurvecase,therefinementruleswerefirstpresentedbyGeorgeChaikin[3].Riesenfeld[18]proceededtoshowthatChaikin’scurveswereuniformquadraticB-splinecurves.DooandSabin[7,8]extendedChaikin’smethodtouniformquadraticB-splinesurfacesandthenextendedtherefine-mentrulesforthequadraticcasetomeshesofanarbitrarytopol-ogy.CatmullandClark[2]developedasimilartechniquefortheuniformcubicB-splinecase.Thesemethodshavenowcomeintowidespreaduseingeometricmodeling.Theyhavebeenusedforinterpolationandfairing[10],approximation[12],andmultireso-lutiondesign[16].
Inthispaper,weconsiderlatticesofarbitrarytopologyandde-velopasetofrefinementrulesthatsubdividethislatticetogener-ateadeformableregioninthree-dimensionalspace.Togeneratethedeformableregions,weutilizeanextensionoftheCatmull-Clarksubdivisionmethodtovolumes.Inthefollowingsections,wesum-marizetheCatmull-ClarkrefinementrulesfortheuniformB-splinevolume,alongwiththeextensionsofthesemethodstolatticesofar-bitrarytopology.Thecompletedetailsofthedevelopmentoftheserefinementrulescanbefoundin[13].
2.1SubdivisionMethodsforTrivariateCubicUni-formB-SplineVolumes
GivenacontrollatticethatdefinesatrivariateuniformB-splinevolume,thesubdivisionmethodgeneratesanewcontrollatticewhichconsistsoftheunionofalltheverticesgeneratedbyabinary
182
figures/fig2.tiffigures/fig3.tif
Figure2:Type-3,4and5cellsgeneratedbythesubdivisionprocess.subdivisionofthetrivariatevolume.Thesepointscanbeclassifiedinto
1.cellpoints–thesepointsaretheaverageoftheverticesinthelatticethatmakeupthecell.2.facepoints–thesepointscanbewrittenas
Figure3:Thetype-cellsgeneratedbyrepeatedsubdivision.
2.2Catmull-ClarkVolumes
Extensionoftheaboverulestolatticesofarbitrarytopologyisstraightforward,usinganextensionofthebivariateCatmull-Clarksubdivisionstrategy[2].Wecanclassifythepointsoftherefinementintofourtypes:
1.cellpoints–thesepointsaretheaverageoftheverticesofthelatticethatboundthecell.2.facepoints–thesepointscanbewrittenas
whereandarethecellpointsofthetwoadjacenthex-ahedralcellsthatcontainthefaceandisthefacecentroid(theaverageoftheverticesthatsurroundtheface).
3.edgepoints–thesepointscanbewrittenas
whereandarethecellpointsofthetwocellsthatcon-tainthefaceandisthefacecentroid.
3.edgepoints–thesepointscanbewrittenas
whereistheaverageofthecellpointsforthosehexa-hedralcellsthatcontainthisedge,istheaverageofthe
facecentroidsforthosefacesthatcontainthisedge,andisthemidpointoftheedge.
4.vertexpoints–thesepointscanbewrittenas
whereistheaverageofthecellpointsforthosecellsthatcontainthisedge,istheaverageofthefacecentroidsforthosefacescontainthisedge,andisthemidpointoftheedge.isthenumberoffacesthatcontaintheedge.
whereistheaverageofthecellpointsforeachofthehexahedralcellsthatcontainthisvertex,istheaver-ageofthefacecentroidsforthefacesthatcontainthisvertex,
istheaverageofthemidpointsfortheedgesthatradiatefromthevertex,andisthevertexitself.
4.vertexpoints–thesepointscanbewrittenas
Ateachsubdivisionstep,acellpointisinsertedintothelatticeforeachcellaccordingtothefirstrule,afacepointisinsertedforeachfaceaccordingtothesecondrule,anedgepointisinsertedforeachedgeaccordingtothethirdrule,andeachvertex’spositionisrecalculatedaccordingtothefourthrule.Toreconnectthelatticeaftertheseruleshavebeenapplied,wefirstconnecteachnewcellpointtothenewfacepointsgeneratedforthefacesdefiningthecell.Eachnewfacepointisconnectedtothenewedgepointsoftheedgesdefiningtheoriginalface.Eachnewedgepointisconnectedtothetwovertexpointsdefiningtheoriginaledge.
whereistheaverageofthecellpointsforeachofthecellsthatcontainthisvertex,istheaverageoftheface
istheav-centroidsforthefacesthatcontainthisvertex,
erageofthemidpointsfortheedgesthatradiatefromthever-tex,andisthevertexitself.
Theserefinementrulescanbeappliedtoalatticeofarbitrarytopol-ogycreatinganewsetofvertexpoints,edgepoints,facepointsandcellpoints.ThereconnectionstrategyisidenticaltothatofthetrivariateuniformB-splinelattice:thenewcellpointareconnectedtothenewfacepointsgeneratedforthefacesdefiningthecell;thenewfacepointsareconnectedtothenewedgepointsfromtheedges
183
figures/fig4.tiffigures/fig5.tif
Figure4:Catmull-ClarkVolumesdefinedbyarectangularandcylindricallattice.
Figure5:Catmull-Clarkvolumeswithboundaryandedgecontrol.Thecornerverticesareyellow,thesharpedgesarered,theboundaryedgesaregreenandtheinternaledgesareblue.
Cornerverticesareidentifiedasthoseincidenttoonlyonecellofthelattice.Intherefinementprocedure,thepositionofacornervertexdoesnotchange.
Sharpedgesarethoseedgesjoiningverticesthatareincidenttoonlyoneortwocellsofthelattice,includingcornervertices.TheedgeandvertexpointsalongthesharpedgesofthelatticearecalculatedaccordingtosubdivisionrulesforuniformcubicB-splinecurves[13].
Allothervertex,edge,andfacepointsontheboundaryaregeneratedaccordingtotheCatmull-Clarkrulesforsurfaces[2].
AllinternalpointsarecalculatedusingtheCatmull-Clarkrulesforvolumes.
definingtheoriginalface;and,eachnewedgepointisconnectedtothetwonewvertexpointsfromtheoriginaledge.
Todescribethecellstructureofthesubdividedlattice,wedefinethevalenceofavertexwithinacelltobethenumberofedgesinthatcontainthevertex.Givenacellofalattice,con-sideravertexofthecellofvalence.Therefinementprocesscreatesanewcellfromthatcontains4-sidedfaces,verticesofvalenceandverticesofvalence(seefigure2).Wecallthesecharacteristiccellstype-cells.Afterthefirstsubdivision,allcellscanbeclassifiedastype-cells.
Inthesubdivisionprocess,atype-cellisrefinedintotwotype-cellsandtype-cells.Thetype-cellisahexahedralcellwith4-sidedfacesand3-valencevertices.Afterafewsubdivisions,thebulkofthelatticewillconsistoftype-cellsarrangedinareg-ularpattern–thatofthetrivariateuniformB-splinecase–exceptaroundafinitenumberoftype-cellswherethisregularityisdis-turbed.For,thenumberoftype-cellsdoublesineachap-plicationofthesubdivisionalgorithm(seefigure3).
Figure4illustratestheCatmull-Clarkvolumesgeneratedfromthelatticesshowninfigure1.
3
BoundaryControloftheSubdivisionVolume
Designingalatticethatrepresentsaparticularregionofspaceisadifficulttask.Thefree-formdeformationsofSederbergandParry[19]werebaseduponaninitiallatticethatwasformedonaparal-lelepiped,withthedeformablespacefillingthelatticecompletely.Inourcase,theregionofspaceresultingfromapplyingthetrivari-ateCatmull-Clarksubdivisionmethodtoanarbitrarylatticedoesnotconformcloselytothegeneralshapeofthelattice–shrinkingawayfromtheboundarysubstantially.Infigure4forexample,thecylindricallatticedoesnotrefineintoacylindricalregionofspace.Thisfeaturecreatesanunusualburdenonthedesignerandlimitstheusefulnessofthetechnique.
Tosolvethisproblemandcreateatoolthatwillconstructregionsofspacethatareintuitivetothedesigner,wemodifytherefinementrulesforthoseareasofthelatticethatcorrespondtoboundarysur-faces,sharpedges,andcornervertices.Theserulesaresummarizedasfollows:
Givenalatticebasedonacube,thesemethodswillgeneratearegionofspacethatisthecube.Inthecaseofthelatticeapproximatingacylinder,theregionisflatateitherendofthecylinderandroundedalongthelengthofthecylinderasonewouldexpect.Theseareshowninfigure5.Thecornerverticesareyellow,thesharpedgesarered,theboundaryedgesaregreenandtheinternaledgesareblue.ThesetechniqueshavebeenpreviouslyusedbyNasri[17]forDoo-Sabinsurfaces,andaresimilartothetechniquesusedbyHoppeetal.[12]indefiningedges,creases,cornersanddartsonLoopSur-faces[15].Whenaddedtothesubdivisionprocedure,thesenewrulesgeneratedeformableregionsofspacethatcloselyrepresenttheirlattice.
4CalculatingtheLocationofVertices
EmbeddedintheDeformableSpace
SederbergandParry[19]imposetheinitiallatticeonaparal-lelepipedinspaceandcalculatetheparameterizationofapointwithinthedeformablespacebyusingthelocalcoordinatesofapointwithintheparallelepiped.Thelocationofthepointunderthede-formationiscalculatedbysubstitutingtheselocalcoordinatevaluesintothedefiningequationforthetrivariateB´eziervolume.Coquil-lart[5]usesasimilarmethod,butnumericaliterationisrequiredto
184
calculatethelocalcoordinate,asherinitiallatticesarenotformedasparallelepipeds.Inboththesecases,thecellsofthelatticearehex-ahedral.Inthecasethatthelatticeisofanarbitrarytopologyandtheabovesubdivisionprocedureisused,asimpletrivariateparam-eterizationisnotavailable.Fortunately,thesubdivisionprocedureitselfcanbeusedtoestablishacorrespondencebetweenpointsinthedeformableregionandpointsinthedeformedregion.
Givenaninitiallattice,thesubdivisionproceduregeneratesa
thatconvergetothede-sequenceoflattices
formableregion.Eachlatticeinthesequenceinducesapartitioningofthedeformablespacebyitscells.Weselectalattice,say,thathasthepropertythatthemaximumvolumeoftheindividualcellsofissmall.Wethenidentifythecellofthatcontainsagivenpointandassumethatisdeformedtoapositionwithinthecor-respondingcellofthedeformedlattice–inthesamerelativeposi-tioninthecell.Whereasthisisanapproximation,itcanbemadearbitrarilyclosetotheactualdeformation.
Todeterminetherelativepositionofapointinthecell,wetakeadvantageofthefactthatafterthefirstrefinementallcellsaretype-cells,andmostaretype-(hexahedral).Inthetype-casewecancalculateatrilinearapproximationofthepositionofthepointinthecellandusethistrilinearparameterizationtoadjustthepositionofthepointinthedeformedcell.Inthetype-case,wecancalculateapiecewisetrilinearapproximation,bypartitioningthecellintotetra-hedra,andusethistoadjustthepositioninthedeformedcell.
figures/fig6.tif
Figure6:Partitioningofatype-cellforapproximation.Thegreenedgesrepresenttheoriginaledgesofthecell.Theblueedgesaregeneratedbythetetrahedralpartition.
6ImplementationDetails
5
TheDeformationProcess
Todeformanobject,wefollowthe4-stepprocedureoutlinedbyCo-quillartin[5].First,theusermustconstructthelattice.Thisisnor-mallydonebyutilizinganinventoryoflatticesandasetoftoolstomergeandbuildnewlatticesfromthisinventory.Acommontoolistheextrusiontoolthattakesameshandextrudesitinaspecifieddirectiontobecomealattice(thecylinderoffigure1wasgeneratedinthismanner.)Atthelowestlevel,theuserisallowedtotocre-atecellsonebyone,attachingthemfacebyfacetoformthelattice.Boundarysurfaces,sharpedgesandcornerverticescanbemarkedautomatically(asinsection3),oramanualmarkingprocedurecandeterminethem.Oncethelatticehasbeenconstructed,theusermustplacethelatticearoundtheobject,orthepartoftheobject,tobede-formed.
Whenthelatticeisorientedproperly,itisfrozentotheobject.Atthistime,thelatticeisrefined,andthenumberofrefinementstepsisretained.
Eachpointembeddedinthedeformableregioncanbe“tagged”withapointertothecelloftherefinedlatticethatcontainsthepoint,andafinitenumberofparametersthatdefinesitspositioninthecell.
Thedatastructureholdingthelatticeisimplementedasanexten-sionofthehalf-edgedatastructureforsurfaces–muchliketheradial-edgestructureofWeiler[20].Theprimarydifferencebe-tweenhalfedgestructureforameshrepresentingasurfaceandalat-ticerepresentingavolumeisthatthelatticestructuremayhavesev-eralfacesthatcontaineachedge–themeshstructurewillhaveatmosttwo.Inaddition,areal-timedeformationalgorithmrequiresthatthesequenceoflatticesbestoredhierarchically.Thesub-divisionstepsarethenexecutedonlyonceduringtheinitialization(orfreezing)phaseofthedeformation.Subsequentdeformationsofthelatticethenrequireonlytherecalculationoftherefinementrulesfortheverticesinlatticesto,withoutrecreatingthelatticestructure.Witheachsubdivision,thesizeofthedatastructurenearlytriplesandsodeformationswheretheuserdesiresaverysmallcellsizecanbequitememoryintensive.
Manynumericalalgorithmsexisttogeneratethetrilinearapprox-imationofapointinatype-cell.WehaveutilizedanadaptationofanalgorithmpresentedbyHamann,etal.[11].Givenapointinacell,wegenerateapointasthetrilinearpointdefinedby
.Wethenobtain
Foratype-hexahedralcell,theparametersconsistofa
triplewhichdefinesthepoint’strilinearparameter-izationwithinthecell.
Foratype-cell,anewcellpointiscalculatedandthecellispartitionedintotetrahedraaboutthiscellpoint,eachfacecontributingtwotetrahedratothepartition(seefigure6).Theparametersconsistofanindexintothetetrahedracontainingthepointandatriplewhichdefinesthepoint’spa-rameterizationwithinthetetrahedra.
isthetransposeofalocalapproximateoftheJacobianat
obtainedbyinterpolatingtheestimatesoftheJacobians
attheverticesofthecell.Ingeneral,where
Finally,theoriginallatticeisdeformedbymovingoneormoreofitsvertices.Thedeformedlatticeisthenrefinedtimesandthetagoneachpointisusedtoobtainthecorrespondingcellinthede-formedlattice.Theverticesofthiscellareusedtocalculateaposi-tionforthedeformedpointaccordingtotheparametersassociatedwiththeoriginal.
isobtainedbyperformingtrilinearinterpolationat
oftheJacobiansattheverticesofthecell.
Theprocedureisrepeateduntilthedistancebetweenandissufficientlysmall.Wefoundthatfewiterationswereneededasthealgorithmconvergesquicklyandthecellsaregenerallysmall.Inthecaseofatype-cell,wepartitionthecellintotetrahe-drabyutilizingthecellpoint(averageoftheverticesofthecell).Asimpleinterpolationfunctionfortetrahedralcellscanbewrittenas
where
185
where,,,and,arethefourverticesofthetetrahedra.Thiscanbeputintomatrixformandsolveddirectly[14].
Withthisimplementation,wehavefoundthatthealgorithmex-ecutesinrealtimeonanSGIIndigoExtreme.
9Acknowledgments
Weareverygratefultotheanonymousrefereesfortheirmanyhelp-fulcommentsonthefirstversionofthispaper.WewouldalsoliketothankBerndHamannforpointingustowardthesimpletrivari-ateschemesthatmakethisalgorithmpossible.SpecialthanksgotoJustinLegakisformanyusefulcritiquesoftheresearch,andwhoassistedusintheproductionofourfinalimages.Thedataforthe”mobster”infigure9wascontributedviatheavalonciteatwww.viewpoint.com.Theresearchreportedherewaspartiallysup-portedbyagrantthroughtheUniversityofCaliforniaMICROPro-gram.
7Results
TheprimarymotivationformovingfromthehexahedraltopologicallatticesofthetrivariateB´ezierandB-splinerepresentationsof[5,9,19]wastoincreasetheinventoryofavailablelatticesandthusthenumberofpossibledeformations.Figures7through9showtheresultsofthisalgorithmwithavarietyofmeshesandshapes.
Figure7exhibitsadeformationbyacylindricallattice,resultinginasurfacedeformationintheformofastar.
Figure8illustratesacomplexlatticeintheshapeofabarbell.Thislatticewasgeneratedbycreatingameshintheshapeofabar-bellandextrudingtheshapetoformthelattice.Thesubdivisionmethodologyautomaticallyhandlesthecontinuitybetweentheseg-mentsofthelattice.
Figure9showsadeformationappliedtothearmofthe“mobster”whichcausesthearmtoliftupward,andthehandtotwisttowardtheviewer.Thisisanexcellentexampleofourtechnique,asitwasnecessarytoconstructthelatticeabouttheappendagethatwastobemoved.
References
[1]AlanH.Barr.Globalandlocaldeformationsofsolidprimi-tives.InComputerGraphics(SIGGRAPH’84Proceedings),volume18,pages21–30,July1984.[2]E.CatmullandJ.Clark.RecursivelygeneratedB-splinesur-facesonarbitrarytopologicalmeshes.Computer-AidedDe-sign,10:350–355,September1978.[3]G.Chaikin.Analgorithmforhighspeedcurvegeneration.
ComputerGraphicsandImageProcessing,3:346–349,1974.[4]Yu–KuangChangandAlynP.Rockwood.Ageneralizedde
Casteljauapproachto3Dfree–Formdeformation.InProceed-ingsofSIGGRAPH’94(Orlando,Florida,July24–29,1994),ComputerGraphicsProceedings,AnnualConferenceSeries,pages257–260.[5]SabineCoquillart.Extendedfree-formdeformation:Asculp-turingtoolfor3Dgeometricmodeling.InComputerGraphics(SIGGRAPH’90Proceedings),volume24,pages187–196,August1990.[6]SabineCoquillartandPierreJanc´ene.Animatedfree-formde-formation:Aninteractiveanimationtechnique.InComputer
Graphics(SIGGRAPH’91Proceedings),volume25,pages23–26,July1991.[7]D.Doo.Asubdivisionalgorithmforsmoothingdownirreg-ularlyshapedpolyhedrons.InProceedingsoftheInt’lConf.InteractiveTechniquesinComputerAidedDesign,pages157–165,1978.[8]D.DooandM.Sabin.Behaviourofrecursivedivisionsurfaces
nearextraordinarypoints.Computer-AidedDesign,10:356–360,September1978.[9]JosefGriessmairandWernerPurgathofer.Deformationof
solidswithtrivariateB-splines.InEurographics’,pages137–148.North-Holland,September19.[10]MarkHalstead,MichaelKass,andTonyDeRose.Efficient,
fairinterpolationusingCatmull-Clarksurfaces.InComputerGraphics(SIGGRAPH’93Proceedings),volume27,pages35–44,August1993.[11]BerndHamann,DonhuaWu,andRobertJ.MoorheadII.On
particlepathgenerationbasedonquadrilinearinterpolationandBernstein-B´ezierpolynomials.IEEETransactionsonVi-sualizationandComputerGraphics,1(3):210–217,1995.[12]HuguesHoppe,TonyDeRose,TomDuchamp,MarkHalstead,HubertJin,JohnMcDonald,JeanSchweitzer,andWernerStuetzle.Piecewisesmoothsurfacereconstruction.InPro-ceedingsofSIGGRAPH’94(Orlando,Florida,July24–29,
8Conclusions
Wehavedescribedanewfree-formdeformationtechniquethatgen-eralizespreviousmethodsbyallowing3-dimensionaldeformationlatticesofarbitrarytopology.ThetechniqueusesanextensionoftheCatmull-Clarksubdivisionmethodologytosuccessivelyrefinea3-dimensionallatticeintoasequenceoflatticesthatconvergeuni-formlytoaregionof3-dimensionalspace.Deformationofthelat-ticethenimplicitlydefinesadeformationofthisregion.Anunder-lyingmodelcanbedeformedbyestablishingpositionsofthepointsofthemodelwithintheconvergingsequenceoflattices,establishingthecellofthelatticethatcontainsthepoint,establishinganapprox-imationofthepositionofthepointwithinthecell,andusingthisinformationtoestablishthenewpositionsofthesepointswithinthedeformedlattice.
Thismethodisverypowerfulinthatitcanbeappliedtovirtuallyanygeometricmodel,asitdirectlymodifiestheverticesthatdefinethemodel.Thevarietyoflatticesthatcanbeusedwiththistech-niquegreatlyincreasesthenumberofdeformationsthatcanbeac-complished.
Wehaveonlydiscussedpositionaldataoftheembeddedobjectinthispaper.Itisclearthatthelatticecouldholdadditionalparam-eters.Forexample,wecouldstore,inthelatticepointstheparame-tersofasolidtexture.Asthelatticeisdeformed,thetexturewouldbedeformedalongwiththeobject.
Thecarefulreaderwillnoticethat,forthevertexpointsoftheCatmull-Clarkvolume,weutilizetheform
whichdoesnotcontainanadjustmentforthenumberofedgesra-diatingfromavertex.WefoundthattheCatmull-Clarksurfacemethodologydirectlygeneralizestoedgepoints,butnottothever-texpointsoftherefinementrules.Itwasourpurposetousethisre-finementtogenerateapartitioningofthedeformablespacebyitscells,andforthispurpose,thiscalculationappearstoworkverywell.Adetailedtheoreticalanalysisofthecontinuityofthederiva-tivesofthesevolumesattheextraordinarypoints[2,8].willhavetobeaddressedinafuturepaper.
186
1994),ComputerGraphicsProceedings,AnnualConferenceSeries,pages295–302.
[13]KennethI.JoyandRonMacCracken.Therefinementrules
forCatmull-Clarksolids.TechnicalReportCSE-96-1,Depart-mentofComputerScience,UniversityofCalifornia,Davis,January1996.[14]DavidN.KenwrightandDavisA.Lane.Optimizationoftime-dependentparticletracingusingtetrahedraldecomposition.InProceedingsofVisualization’95,pages321–328.IEEECom-puterSociety,1985.[15]CharlesLoop.Smoothsubdivisionsurfacesbasedontrian-gles.Master’sthesis,DepartmentofMathematics,UniversityofUtah,August1987.[16]MikeLounsbery.MultiresolutionAnalysisforSurfacesofAr-bitraryTopologicalType.PhDthesis,DepartmentofCom-puterScienceandEngineering,UniversityofWashington,Seattle,WA,June1994.[17]A.Nasri.Polyhedralsubdivisionmethodsforfree-formsur-faces.ACMTransactionsonGraphics,6:29–73,1987.[18]R.Riesenfeld.OnChaikin’salgorithm.ComputerGraphics
andImageProcessing,4(3):304–310,1975.[19]ThomasW.SederbergandScottR.Parry.Free-formdeforma-tionofsolidgeometricmodels.InComputerGraphics(SIG-GRAPH’86Proceedings),volume20,pages151–160,August1986.[20]KevinJ.Weiler.Topologicalstructuresforgeometricmod-eling.PhDthesis,RensselaerPolytechnicInstitute,August1986.
187
figures/fig7a.tif
figures/fig7b.tiffigures/fig7c.tif
Figure7:Deformingadiskwithastar-shapedlattice.
Figure 1: Lattice Structures
Figure 4: Catmull-Clark Volumes defined by a rectangular and
cylindrical lattice.
Figure 2: Type-3, 4 and 5 cells generated by the subdivision process.
Figure 5: Catmull-Clark volumes with boundary and edge control.The corner vertices are yellow, the sharp edges are red, theboundary edges are green and the internal edges are blue.
Figure 3: The type-4 cells generated by repeated subdivision.
Figure 6: Partitioning of a type-n cell for approximation.The green edges represent the original edges of the cell.The blue edges are generated by the tetrahedral partition.
High-resolution TIFF versions of these images can be found on the CD-ROM in:
S96PR/papers/joy
188
Figure 7: Deforming a disk with a star-shaped lattice.
High-resolution TIFF versions of these images can be found on the CD-ROM in:
S96PR/papers/joy
1
Figure 8: Deforming a block with a barbell-shaped lattice.Figure 9: Deforming the mobster’s arm.
High-resolution TIFF versions of these images can be found on the CD-ROM in:
S96PR/papers/joy
190
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- huatuo7.cn 版权所有 湘ICP备2022005869号-9
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务