您好,欢迎来到华佗养生网。
搜索
您的当前位置:首页专题06 方案选择问题-中考数学试题研究(河南专版)

专题06 方案选择问题-中考数学试题研究(河南专版)

来源:华佗养生网
 1、河南中考考情分析: 方案选择问题一直是河南中考考察的热点问题,试题一般设在21题,分值10分,难度中等偏上。方案选择问题实际上是方程、函数和不等式的综合问题,所以试题一般考察:解二元一次方程组、根据实际问题写出函数解析式、利用一元一次不等式的不等关系结合一次函数求最值(最小值、最大值)。难点有: 1、根据实际问题列方程(组); 2、通过不等式的不等关系求得变量的取值范围,然后利用不等式求最值。 2、考察数学思想: 1、函数思想、不等式及方程思想; 2、分类讨论思想。 3、解题方法和注意事项: 1、方案选择问题一般有两问,第一问一般是利用解二元一次方程组求出单个商品的(单价、利润); 2、根据题目中的不等关系求出最值(利润最大、方案最优、花费最省)或求得所满足的几种方案。

2018河南中考21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表: 销售单价x(元) 日销售量y(个) 日销售利润w(元) 85 175 875 95 125 1875 105 75 1875 115 m 875 (注:日销售利润=日销售量×(销售单价﹣成本单价))

(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值; (2)根据以上信息,填空:

该产品的成本单价是 80 元,当销售单价x= 100 元时,日销售利润w最大,最大值是 2000 元; (3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?

【分析】(1)根据题意和表格中的数据可以求得y关于x的函数解析式; (2)根据题意可以列出相应的方程,从而可以求得生产成本和w的最大值; (3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本.

(2)设成本为a元/个,

当x=85时,875=175×(85﹣a),得a=80,

w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000, ∴当x=100时,w取得最大值,此时w=2000, 故答案为:80,100,2000; (3)设科技创新后成本为b元, 当x=90时,

(﹣5×90+600)(90﹣b)≥3750, 解得,b≤65,

答:该产品的成本单价应不超过65元.

2017河南中考 21.(10分)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同. (1)求这两种魔方的单价;

(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.

【分析】(按买3个A种魔方和买4个B种魔方钱数相同解答)

(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同”,即可得出关于x、y的二元一次方程组,解之即可得出结论;

(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据两种活动方案即可得出w活动一、w活动二关于m的函数关系式,再分别令w活动一<w活动二、w活动一=w活动二和w活动一>w活动

,解出m的取值范围,此题得解.

(按购买3个A种魔方和4个B种魔方需要130元解答)

(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同”,即可得出关于x、y的二元一次方程组,解之即可得出结论;

(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据两种活动方案即可得出w活动一、w活动二关于m的函数关系式,再分别令w活动一<w活动二、w活动一=w活动二和w活动一>w活动

,解出m的取值范围,此题得解.

(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个, 根据题意得:w活动一=20m×0.8+15(100﹣m)×0.4=10m+600;

w活动二=20m+15(100﹣m﹣m)=﹣10m+1500. 当w活动一<w活动二时,有10m+600<﹣10m+1500, 解得:m<45;

当w活动一=w活动二时,有10m+600=﹣10m+1500, 解得:m=45;

当w活动一>w活动二时,有10m+600>﹣10m+1500, 解得:45<m≤50.

综上所述:当m<45时,选择活动一购买魔方更实惠;当m=45时,选择两种活动费用相同;当m>45时,选择活动二购买魔方更实惠.

(按购买3个A种魔方和4个B种魔方需要130元解答)

解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个, 根据题意得:解得:

答:A种魔方的单价为26元/个,B种魔方的单价为13元/个.

(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个, 根据题意得:w活动一=26m×0.8+13(100﹣m)×0.4=15.6m+520; w活动二=26m+13(100﹣m﹣m)=1300. 当w活动一<w活动二时,有15.6m+520<1300, 解得:m<50;

当w活动一=w活动二时,有15.6m+520=1300, 解得:m=50;

当w活动一>w活动二时,有15.6m+520>1300, 不等式无解.

综上所述:当0<m<50时,选择活动一购买魔方更实惠;当m=50时,选择两种活动费用相同. 【点评】本题考查了二元一次方程组的应用、一次函数的应用、解一元一次不等式以及解一元一次方程,解题的关键是:(1)找准等量关系,列出关于x、y的二元一次方程组;(2)根据两种活动方案找出w活动一、w活动二关于m的函数关系式.

2016河南中考 20.(9分)学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;

3只A型节能灯和2只B型节能灯共需29元.

(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;

(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.

【分析】(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价是y元,根据:“1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元”列方程组求解即可;

(2)首先根据“A型节能灯的数量不多于B型节能灯数量的3倍”确定自变量的取值范围,然后得到有关总费用和A型灯的只数之间的关系得到函数解析式,确定函数的最值即可.

【解答】解:(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价是y元, 根据题意,得:解得:

答:一只A型节能灯的售价是5元,一只B型节能灯的售价是7元;

【点评】此题主要考查了二元一次方程组的应用以及一次函数的应用等知识,根据题意得出正确的等量关系是解题关键.

2015河南中考21.(10分)某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡: ①金卡售价600元/张,每次凭卡不再收费. ②银卡售价150元/张,每次凭卡另收10元.

暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元 (1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;

(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标; (3)请根据函数图象,直接写出选择哪种消费方式更合算.

【分析】(1)根据银卡售价150元/张,每次凭卡另收10元,以及旅游馆普通票价20元/张,设游泳x次时,分别得出所需总费用为y元与x的关系式即可; (2)利用函数交点坐标求法分别得出即可;

(3)利用(2)的点的坐标以及结合得出函数图象得出答案.

【解答】解:(1)由题意可得:银卡消费:y=10x+150,普通消费:y=20x; (2)由题意可得:当10x+150=20x, 解得:x=15,则y=300, 故B(15,300),

当y=10x+150,x=0时,y=150,故A(0,150), 当y=10x+150=600, 解得:x=45,则y=600, 故C(45,600);

(3)如图所示:由A,B,C的坐标可得: 当0<x<15时,普通消费更划算;

当x=15时,银卡、普通票的总费用相同,均比金卡合算; 当15<x<45时,银卡消费更划算;

当x=45时,金卡、银卡的总费用相同,均比普通票合算; 当x>45时,金卡消费更划算.

【点评】此题主要考查了一次函数的应用,根据数形结合得出自变量的取值范围得出是解题关键. 2014河南中考 21.(10分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.

(1)求每台A型电脑和B型电脑的销售利润;

(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元. ①求y关于x的函数关系式;

②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?

(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.

【分析】(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意列出方程组求解,

(2)①据题意得,y=﹣50x+15000,

②利用不等式求出x的范围,又因为y=﹣50x+15000是减函数,所以x取34,y取最大值,

(3)据题意得,y=(100+m)x﹣150(100﹣x),即y=(m﹣50)x+15000,分三种情况讨论,①当0<m<50时,y随x的增大而减小,②m=50时,m﹣50=0,y=15000,③当50<m<100时,m﹣50>0,y随x的增大而增大,分别进行求解.

(3)据题意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000, 33≤x≤70

①当0<m<50时,y随x的增大而减小,

∴当x=34时,y取最大值,

即商店购进34台A型电脑和66台B型电脑的销售利润最大. ②m=50时,m﹣50=0,y=15000,

即商店购进A型电脑数量满足33≤x≤70的整数时,均获得最大利润; ③当50<m<100时,m﹣50>0,y随x的增大而增大, ∴当x=70时,y取得最大值.

即商店购进70台A型电脑和30台B型电脑的销售利润最大.

【点评】本题主要考查了一次函数的应用,二元一次方程组及一元一次不等式的应用,解题的关键是根据一次函数x值的增大而确定y值的增减情况.

2013河南中考21.(10分)某文具商店销售功能相同的A、B两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元. (1)求这两种品牌计算器的单价;

(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器5个以上超出部分按原价的七折销售,设购买x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式;

(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由.

【分析】(1)设A、B两种品牌的计算器的单价分别为a元、b元,然后根据156元,122元列出二元一次方程组,求解即可;

(2)A品牌,根据八折销售列出关系式即可,B品牌分不超过5个,按照原价销售和超过5个两种情况列出关系式整理即可;

(3)先求出购买两种品牌计算器相同的情况,然后讨论求解.

【解答】解:(1)设A、B两种品牌的计算器的单价分别为a元、b元, 根据题意得,解得:

答:A种品牌计算器30元/个,B种品牌计算器32元/个; (2)A品牌:y1=30x•0.8=24x;

B品牌:①当0≤x≤5时,y2=32x,

②当x>5时,y2=5×32+32×(x﹣5)×0.7=22.4x+48, 综上所述: y1=24x, y2=

(3)当y1=y2时,24x=22.4x+48,解得x=30,即购买30个计算器时,两种品牌都一样; 当y1>y2时,24x>22.4x+48,解得x>30,即购买超过30个计算器时,B品牌更合算; 当y1<y2时,24x<22.4x+48,解得x<30,即购买不足30个计算器时,A品牌更合算.

【点评】本题考查了一次函数的应用,二元一次方程组的应用,(1)读懂题目信息,理清题中等量关系是解题的关键,(2)B品牌计算器难点在于要分情况讨论,(3)先求出购买计算器相同时的个数是解题的关键. 2012河南中考21.(10分)某中学计划购买A型和B型课桌凳共200套.经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元. (1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?

(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳数量的,求该校本次购买A型和B型课桌凳共有几种方案?哪种方案的总费用最低? 【分析】(1)根据购买一套A型课桌凳比购买一套B型课桌凳少用40元,以及购买4套A型和5套B型课桌凳共需1820元,得出等式方程求出即可;

(2)利用要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳数量的,得出不等式组,求出a的值即可,再利用一次函数的增减性得出答案即可.

(2)设购买A型课桌凳a套,则购买B型课桌凳(200﹣a)套. 由题意得:解得:78≤a≤80.

∵a为整数, ∴a=78、79、80. ∴共有3种方案,

设购买课桌凳总费用为y元,

则y=180a+220(200﹣a)=﹣40a+44000. ∵﹣40<0,y随a的增大而减小,

∴当a=80时,总费用最低,此时200﹣a=120,

即总费用最低的方案是:购买A型80套,购买B型120套.

【点评】此题主要考查了一元一次方程的应用和不等式组的应用以及一次函数的增减性,根据已知得出不等式组,求出a的值是解题关键.

2011河南中考21.(10分)某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下:

人数m 收费标准(元/人) 0<m≤100 90 100<m≤200 85 m>200 75 甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费20 800元,若两校联合组团只需花费18 000元.

(1)两所学校报名参加旅游的学生人数之和超过200人吗?为什么? (2)两所学校报名参加旅游的学生各有多少人?

【分析】(1)由已知分两种情况讨论,即a>200和100<a≤200,得出结论;

(2)根据两种情况的费用,即x>200和100<x≤200分别设未知数列方程组求解,讨论得出答案. 【解答】解:(1)这两所学校报名参加旅游的学生人数之和超过200人,理由为: 设两校人数之和为a,

若a>200,则a=18000÷75=240; 若100<a≤200,则a=18000÷85=211

>200,不合题意,

则这两所学校报名参加旅游的学生人数之和等于240人,超过200人.

(2)设甲学校报名参加旅游的学生有x人,乙学校报名参加旅游的学生有y人,则 ①当100<x≤200时,得解得

(6分)

②当x>200时,得

解得不合题意,舍去.

答:甲学校报名参加旅游的学生有160人,乙学校报名参加旅游的学生有80人. 【点评】此题考查的是二元一次方程组的应用,关键是把不符合题意的结论舍去.

2010河南中考20.(9分)为鼓励学生参加体育锻炼,学校计划拿出不超过1600元的资金再购买一批篮球和排球,已知篮球和排球的单价比为3:2.单价和为80元. (1)篮球和排球的单价分别是多少元?

(2)若要求购买的篮球和排球的总数量是36个,且购买的篮球数量多于25个,有哪几种购买方案?

(2)设购买的篮球数量为n个,则购买的排球数量为(36﹣n)个. ∴

解,得25<n≤28.

而n为整数,所以其取值为26,27,28,对应的36﹣n的值为10,9,8. 所以共有三种购买方案:

方案一:购买篮球26个,排球10个; 方案二:购买篮球27个,排球9个; 方案三:购买篮球28个,排球8个.

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- huatuo7.cn 版权所有 湘ICP备2022005869号-9

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务